Keyword: quadrupole
Paper Title Other Keywords Page
MOPOST003 BBQ and Doughnut Beams: A Tasty Recipe for Measuring Amplitude Dependence of the Closest Tune Approach coupling, resonance, octupole, site 42
 
  • E.H. Maclean, F.S. Carlier, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Beam-based observations and theoretical studies have demonstrated the existence of a significant amplitude dependence of the closest tune approach (ADECTA) in the LHC. This effect has the potential to generate significant distortion of the tune footprint and thus is of interest in regard to Landau damping. Conventionally ADECTA has been studied through saturation of tune separation with action during amplitude-detuning type measurements. In this paper, an alternative measurement technique is proposed and results of initial tests with beam are presented. The novel technique attempts to measure ADECTA by performing a classical closest approach tune scan, using proton beams in the LHC, which have been kicked and allowed to decohere, effectively giving a large action doughnut beam. It is shown that the tune and closest approach of the doughnut beams can be measured using the existing LHC Base-Band tune (BBQ) measurement system, and an amplitude dependence can be observed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST003  
About • Received ※ 08 June 2022 — Revised ※ 20 June 2022 — Accepted ※ 12 July 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST036 Transverse Emittance Measurements of the Beams Produced by the ISOLDE Target Ion Sources ion-source, target, emittance, ISOL 144
 
  • N. Bidault
    CERN, Meyrin, Switzerland
 
  The Isotope mass Separator On-Line DEvice (ISOLDE) is a Radioactive Ion Beam (RIB) facility based at CERN where rare isotopes are produced from 1.4 GeV-proton collisions with a target. The different types of targets and ion sources, operating conditions and ionization schemes used during the physics campaign results in extracted beams with various emittances. Characterizing the beam emittance allows deducing the transport efficiency to low-energy experimental stations (up to 60 keV) and the mass resolving power of the separators. We report on emittance measurements for different beams of stable elements extracted from surface and plasma ion sources. The dependence of the emittance on the different conditions of operation of the ion sources is investigated and the results are compared to previous measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST036  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST039 Algorithm to Mitigate Magnetic Hysteresis in Magnets with Unipolar Power Supplies power-supply, optics, ISAC, cyclotron 156
 
  • J. Nasser, R.A. Baartman, O.K. Kester, S. Kiy, T. Planche, S.D. Rädel, O. Shelbaya
    TRIUMF, Vancouver, Canada
 
  Funding: National Research Council Canada
The effects of hysteresis on the fields produced by magnetic lenses are not accounted for in TRIUMF’s models of the accelerators. Under certain conditions, such as quadrupoles with unipolar power supplies operating at low currents, these effects have introduced significant field errors with consequences upon tranverse tunes. To combat these uncertainties and make the fields more reproducible and stable, a technique new to TRIUMF has been implemented. This technique ramps the current cyclically about the desired setpoint to reach a reproducible field that is independent of its history. Results of magnetic measurements at TRIUMF using this technique are presented, as well as the expected improvements to the accuracy of the beam optics model, particularly for unipolar quadrupoles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST039  
About • Received ※ 03 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST041 Dynamic Aperture Studies for the Transfer Line From FLUTE to cSTART storage-ring, optics, simulation, linac 164
 
  • J. Schäfer, B. Härer, A.-S. Müller, A.I. Papash, R. Ruprecht, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: J. Schäfer acknowledges the support by the DFG- funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology".
The compact STorage ring for Accelerator Research and Technology cSTART project will deliver a new KIT accelerator test facility for the application of novel acceleration techniques and diagnostics. The goal is to demonstrate storing an electron beam of a Laser Plasma Accelerator (LPA) in a compact circular accelerator for the first time. Before installing an LPA, the Far-Infrared Linac and Test Experiment (FLUTE) will serve as a full energy injector for the compact storage ring, providing stable bunches with a length down to a few femtoseconds. The transport of the bunches from FLUTE to the cSTART storage ring requires a transfer line which includes horizontal, vertical and coupled deflections which leads to coupling of the dynamics in the two transverse planes. In order to realize ultra-short bunch lengths at the end of the transport line, it relies on special optics which invokes high and negative dispersion. This contribution presents dynamic aperture studies based on six-dimensional tracking through the lattice of the transfer line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST041  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST058 Studies on the Vertical Half-Integer Resonance in the CERN PS Booster resonance, space-charge, injection, brightness 222
 
  • T. Prebibaj, F. Antoniou, F. Asvesta, H. Bartosik
    CERN, Meyrin, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
 
  Following the upgrades of the LHC Injectors Upgrade Project (LIU), the Proton Synchrotron Booster (PSB) at CERN successfully delivers beams with double brightness. An important contributing factor for this was the dynamic correction of the beta-beating induced by the injection chicane, which allowed stable operation closer to the half-integer resonance. Ideally, injection above the half-integer resonance could further improve the beam brightness. In this context, a series of studies were initiated in order to characterize the effects of space charge when crossing the half-integer resonance. In this contribution, the first results of these investigations are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST058  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT021 5D Tomography of Electron Bunches at ARES electron, simulation, emittance, synchrotron 279
 
  • S. Jaster-Merz, R.W. Aßmann, R. Brinkmann, F. Burkart, T. Vinatier
    DESY, Hamburg, Germany
  • R.W. Aßmann
    LNF-INFN, Frascati, Italy
  • S. Jaster-Merz
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  The ARES linear accelerator at DESY aims to deliver stable and well-characterized electron bunches with durations down to the sub-fs level. Such bunches are highly sought after to study the injection into novel high-gradient accelerating structures, test diagnostics devices, or perform autonomous accelerator studies. For such applications, it is advantageous to have a complete and detailed knowledge of the beam properties. Tomographic methods have shown to be a key tool to reconstruct the phase space of beams. Based on these techniques, a novel diagnostics method is being developed to resolve the full 5-dimensional phase space (x,x’,y,y’,z) of bunches including their transverse and longitudinal distributions and correlations. In simulation studies, this method shows an excellent agreement between the reconstructed and the original distribution for all five planes. Here, the 5-dimensional phase space tomography method is presented using a showcase simulation study at ARES.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT021  
About • Received ※ 03 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT043 Recent Developments in Longitudinal Phase Space Tomography synchrotron, extraction, beam-diagnostic, booster 347
 
  • S.C.P. Albright, A. Lasheen
    CERN, Meyrin, Switzerland
  • C.H. Grindheim
    NTNU, Trondheim, Norway
  • A.H.C. Lu
    KTH/NADA, Stockholm, Sweden
 
  Longitudinal phase space tomography has been a mainstay of longitudinal beam diagnostics in most of the CERN synchrotrons for over two decades. Originally, the reconstructions were performed by a highly optimised Fortran implementation. To facilitate increased flexibility, and leveraging the significant increase in computing power since the original development, a new version of the reconstruction code has been developed. This implements an object-oriented Python API, with the computationally heavy calculations in C++ for improved performance. The Python/C++ implementation is designed to be highly modular, enabling new and diverse use cases. For example, the macro-particle tracking for the tomography can now be performed externally, or a single set of tracked particles can be reused for multiple reconstructions. This paper summarises the features of the new implementation, and some of the key applications that have been enabled as a result.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT043  
About • Received ※ 30 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT047 Experimental Demonstration of Machine Learning Application in LHC Optics Commissioning optics, MMI, simulation, diagnostics 359
 
  • E. Fol, F.S. Carlier, J. Dilly, M. Hofer, J. Keintzel, M. Le Garrec, E.H. Maclean, T.H.B. Persson, F. Soubelet, R. Tomás García, A. Wegscheider
    CERN, Meyrin, Switzerland
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  Recently, we conducted successful studies on the suitability of machine learning (ML) methods for optics measurements and corrections, incorporating novel ML-based methods for local optics corrections and reconstruction of optics functions. After performing extensive verifications on simulations and past measurement data, the newly developed techniques became operational in the LHC commissioning 2022. We present the experimental results obtained with the ML-based methods and discuss future improvements. Besides, we also report on improving the Beam Position Monitor (BPM) diagnostics with the help of the anomaly detection technique capable to identify malfunctioning BPMs along with their possible fault causes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT047  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT050 Systematic Study of Electron Beam Measuring Systems at the PBP-CMU Electron Linac Laboratory electron, emittance, linac, simulation 371
 
  • K. Techakaew, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
 
  The linear accelerator system at the PBP-CMU Electron Linac Laboratory (PCELL) is used to produce electron beam with suitable properties for generating coherent teragertz (THz) radiation and mid-infrared free-electron laser (MIR FEL). Optimization of machine parameters to produce short electron bunches with low energy spread and low transverse emittance was focused in this study. We conducted ASTRA simulations including three-dimentional (3D) space charge algorithm and 3D field distributions for radio-frequency (RF) electron gun and all magnets to develop measuring systems. Electron beam energy and energy spread were investigated downstream the RF gun and the RF linac using an alpha magnet and a dipole spectrometer, respectively. The transverse beam emittance was studied using the quadrupole scan technique. By filtering proper portion of electrons before entering the linac, the beam with average energy of 20 MeV and energy spread of 0.1-1% can be achieved for a bunch charge of 100 pC. The systematic error is less than 10% for measuring average energy and energy spread while it is less than 31% for measuring transverse emittance when placing the screen of at least 1.0 m behind the scanning quadrupole magnet. The results of this study were used to develop the measuring setups in our system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT050  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT052 Beam-Based Alignment for LCLS-II CuS Linac-to-Undulator Quadrupoles alignment, target, linac, lattice 377
 
  • X. Huang, D.K. Bohler
    SLAC, Menlo Park, California, USA
 
  An advanced method for beam-based alignment that can simultaneously determine the quadrupole centers of multiple magnets has been applied to the LCLS-II CuS linac-to-undulator (LTU) section. The new method modulates the strengths of multiple quadrupoles and monitor the induced trajectory shift. Measurements are repeated with the beam trajectory through the quadrupoles steered with upstream correctors, from which the quadrupole centers can be obtained. Steering of the trajectory to minimize the induced trajectory shift is also done for finding the quadrupole centers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT052  
About • Received ※ 27 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK002 Fast Orbit Response Matrix Measurement via Sine-Wave Excitation of Correctors at Sirius optics, storage-ring, synchrotron, lattice 425
 
  • M.M.S. Velloso, M.B. Alves, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Sirius is the new 4th generation storage ring based synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS). In this work, we report on the implementation at Sirius of a fast method for orbit response matrix (ORM) measurement which is based on sine-wave parallel excitation of orbit corrector magnets’ strength. This ‘‘AC method" has reduced the ORM measurement time from  ∼ 25 minutes to 2.5-3 minutes and displayed increased precision if compared to the standard serial measurement procedure. When used as input to the Linear Optics from Closed Orbits (LOCO) correction algorithm, the AC ORM yielded similar optics corrections with less aggressive quadrupoles strength changes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK002  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK008 Options for a Light Upgrade of the ESRF Booster Synchrotron Lattice lattice, booster, extraction, SRF 445
 
  • T.P. Perron, N. Carmignani, L.R. Carver, L. Hoummi, S.M. Liuzzo, S.M. White
    ESRF, Grenoble, France
  • P. Raimondi
    SLAC, Menlo Park, California, USA
 
  The EBS 6 GeV electron storage ring recently commissioned at ESRF, in Grenoble, France, is still operated using the old injector hardware. It is now one of the limiting factor of the facility. The large horizontal emittance of the booster beam affects injection efficiency, preventing from reaching 100% transfer efficiency between the 299.8 m long booster and the storage ring. Different lattice modifications going from minor optics changes to full machine renewal are considered . In this paper we will discuss different options of a "light" upgrade of the FODO lattice, keeping the RF system, vacuum chamber, power supplies, and most of the magnets. The upgrade then consists in creating a few new quadrupole families in the straight section vicinity and remove them from the main QF/QD families.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK008  
About • Received ※ 05 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK011 Generalisation and Longitudinal Extension of the Genetic Lattice Construction (GLC) Algorithm simulation, lattice, beam-transport, space-charge 453
 
  • S. Reimann, M. Droba, O. Meusel, H. Podlech
    IAP, Frankfurt am Main, Germany
  • H. Podlech
    HFHF, Frankfurt am Main, Germany
  • S. Reimann
    GSI, Darmstadt, Germany
 
  The GLC algorithm allows the construction of efficient transfer lines with defined imaging properties using a minimum number of quadrupole elements. This work describes a generalization of this algorithm to make it applicable to the use of arbitrary beam optical elements. This includes an extension to longitudinal phase space.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK011  
About • Received ※ 18 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK013 Machine Learning Based Surrogate Model Construction for Optics Matching at the European XFEL optics, simulation, electron, FEL 461
 
  • Z.H. Zhu, Y. Chen, W. Qin, M. Scholz, S. Tomin
    DESY, Hamburg, Germany
 
  Beam optics matching is a daily routine in the operation of an X-ray free-electron laser facility. Usually, linear optics is employed to conduct the beam matching in the control room. However, the collective effects like space charge dominate the electron bunch in the low-energy region which decreases the accuracy of the existing tool. Therefore, we proposed a scheme to construct a surrogate model with nonlinear optics and collective effects to speed up the optics matching in the European XFEL injector section. This model also facilitates further research on beam dynamics for the space-charge dominated beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK013  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK026 Four-Dimensional Emittance Measurements and Correction of UED Optics up to Sextupole Order emittance, electron, sextupole, solenoid 496
 
  • W.H. Li, M.B. Andorf, A.C. Bartnik, I.V. Bazarov, C.J.R. Duncan, M. Kaemingk, S.J. Levenson, J.M. Maxson, C.A. Pennington
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M.A. Gordon, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
 
  Funding: U.S Department of Energy, grant DE-SC0020144 U.S. National Science Foundation Grant PHY-1549132, the Center for Bright Beams
Ultrafast electron diffraction imposes stringent constraints on the full 6D brightness of the probe electron beam. The desired normalized emittance, often in the few-nanometer regime and below, renders the beam very sensitive to field aberrations and space charge effects. In this proceeding, we report the correction of normal quadrupole, skew quadrupole, and sextupole aberrations in the MEDUSA ultrafast electron micro-diffraction beamline and measurements of the subsequent emittance. This low emittance is enabled by alkali-antimonide photocathodes driven at the photoemission threshold. We demonstrate that the measured emittance is consistent with that of optimized simulations with these cathodes, indicating that low emittance beams from high quality photocathodes can be preserved and used in practical applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK026  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK028 Zero Dispersion Optics to Improve Horizontal Emittance Measurements at the CERN Proton Synchrotron optics, emittance, simulation, space-charge 503
 
  • W. Van Goethem, F. Antoniou, F. Asvesta, H. Bartosik, A. Huschauer
    CERN, Meyrin, Switzerland
 
  In modern particle accelerators, the horizontal dispersion function is forced to zero at locations with instrumentation measuring the transverse beam distribution, in order to remove the dispersive contribution to the horizontal beam size. The design of the CERN Proton Synchrotron did not foresee such a zero-dispersion insertion, making it challenging to get a good precision on the beam size measurements. In this contribution, we present a new optics configuration, which allows to reach zero horizontal dispersion at the locations of different beam size measurement locations. This can be achieved by powering a set of trim quadrupoles, the so-called Low Energy Quadrupoles (LEQ). We investigate how the resulting optics perturbation affects beam parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK028  
About • Received ※ 07 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK029 Improved Low-Energy Optics Control for Transverse Emittance Preservation at the CERN Proton Synchrotron emittance, optics, space-charge, lattice 507
 
  • W. Van Goethem, F. Antoniou, F. Asvesta, H. Bartosik, A. Huschauer
    CERN, Meyrin, Switzerland
 
  Preservation of the transverse emittances across the CERN accelerator chain is an important requirement for beams produced for the Large Hadron Collider (LHC). In the CERN Proton Synchrotron (PS), high brightness LHC-type beams are stored on a long flat bottom for up to 1.2 seconds. During this storage time, direct space charge effects may lead to resonance crossing and subsequent growth of the transverse emittances. Previous studies showed an important emittance increase when the PS working point is moved near integer tune values. Subsequent simulation studies confirmed that this observation is caused by an interplay of space charge effects and the optics beatings induced by the Low Energy Quadrupoles (LEQ). A new optics configuration using these quadrupoles to reduce the optics beating and the emittance growth was developed and experimentally validated. The results of simulation and experimental studies are presented in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK029  
About • Received ※ 07 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK031 10 TeV Center of Mass Energy Muon Collider collider, dipole, focusing, radiation 515
 
  • K. Skoufaris, C. Carli, D. Schulte
    CERN, Meyrin, Switzerland
 
  A Muon collider can provide unique opportunities in high-energy physics as an energy frontier machine. However, a number of challenges have to be addressed during the design process primarily due to the short lifetime of muons. In this work, a lattice for a §I10{TeV} center-of-mass energy collider is presented. Some of the more important challenges faced are: the design of an interaction region with β* values of the order of a few millimeters and an adequate chromatic compensation without sacrificing the physical and dynamic aperture, the flexibility to control the momentum compaction factor and the radiation generated where neutrinos from muons decays reach the surface. These issues are addressed with the development of a new chromatic correction scheme, the extensive use of flexible momentum compaction factor cells and the efficient control of the optical parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK031  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK034 Energy Ramping Process for SPS-II Booster booster, sextupole, synchrotron, emittance 527
 
  • S. Jummunt, S. Klinkhieo, P. Klysubun, T. Pulampong, P. Sudmuang
    SLRI, Nakhon Ratchasima, Thailand
 
  In order to provide synchrotron light with higher photon energy and more brilliant synchrotron light than that of the existing Siam Photon Source (SPS) machine, the possibility of constructing the new 3 GeV SPS-II has been proposed. For SPS-II, the synchrotron source with in-tunnel booster is a good candidate. The booster synchrotron has been designed in order to accelerate an electron beam of 150 MeV to 3 GeV before extracted to storage ring. For a clean injection in top-up operation, the aim in the design of the booster is to achieve the electron beam with a small emittance less than 10 nm-rad and to obtain a large dynamic aperture. The energy ramping process and related effects during the energy ramp are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK034  
About • Received ※ 12 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK036 Studies of the Vertical Excursion Fixed Field Alternating Gradient Accelerator lattice, closed-orbit, optics, simulation 535
 
  • M.E. Topp-Mugglestone, S.L. Sheehy
    JAI, Oxford, United Kingdom
  • J.-B. Lagrange, S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Vertical Excursion Fixed Field Alternating Gradient Accelerator (VFFA) concept offers a number of advantages over existing accelerator archetypes, as discussed in previous works. However, the VFFA has nonplanar orbits by design and unavoidable transverse coupling. Hence, current understanding of the dynamics of this machine is limited; this paper presents some in-depth study of its behaviour using a combination of analytical and numerical techniques.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK036  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK039 Iron Yoke Effects in Quadrupole Magnets for High Rigidity Isotope Beams sextupole, dipole, superconducting-magnet, simulation 546
 
  • D.B. Greene, Y. Choi, J. DeKamp, P.N. Ostroumov, M. Portillo, J.D. Wenstrom, T. Xu
    FRIB, East Lansing, Michigan, USA
  • S.L. Manikonda
    AML, Melbourne, Florida, USA
 
  Iron-dominated superconducting magnets are one of the most popular and most used design choices for superconducting magnetic quadrupoles for accelerator systems. While the iron yoke and pole tips are economic and effective in shaping the field, the large amount of iron also leads to certain drawbacks, namely, unwanted harmonics from the sextupole correctors nested inside of the quadrupole. Additional problems include the nonlinear field profile present in the high-field regime engendered by the presence of steel, and the mechanical and cryogenic design challenges of the entire iron yoke being part of the cold mass. The presented work discusses these effects and challenges by comparing an iron-dominated quadrupole model to an equivalent coil-dominated quadrupole model. The comparison of their respective magnetic harmonics, integrated strength, multipole effects, and mechanical challenges demonstrates that the coil-dominated design is a more favorable choice for select accelerator systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK039  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK040 Progress on the Measurement of Beam Size Using Sextupole Magnets sextupole, factory, coupling, storage-ring 550
 
  • J.A. Crittenden, H.X. Duan, A.E. Fagan, G.H. Hoffstaetter, V. Khachatryan, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by National Science Foundation award number DMR-1829070.
Variations in strength of a sextupole magnet in a storage ring result in changes to the closed orbit, phase functions and tunes which depend on the position of the beam relative to the center of the sextupole and on the beam size. Such measurements have been carried out with 6 GeV positrons at the Cornell Electron Storage Ring. The initial analysis presented at IPAC21 has been extended to both transverse coordinates, introducing additional tune shifts and coupling kicks caused by skew quadrupole terms arising from the vertical position of the positron beam relative to the center of the sextupole. Variations of strength in each of the 76 sextupoles provide measurements of difference orbits, phase and coupling functions. An optimization procedure applied to these difference measurements determines the horizontal and vertical orbit kicks and the normal and skew quadrupole kicks corresponding to the the strength changes. Continuously monitored tune shifts during the sextupole strength scans provide a redundant, independent determination of the two quadrupole terms. Following the recognition that the calculated beam size is highly correlated with the calibration of the sextupole, a campaign was undertaken to obtain precise calibrations of the sextupoles and to measure their offsets relative to the reference orbit, which is defined by the quadrupole centers. We present the measured distributions of calibration correction factors and sextupole offsets together with the accuracy in their determination.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK040  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 24 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK045 Generation of High Emittance Ratios in High Charge Electron Beams at FACET-II emittance, experiment, laser, cathode 560
 
  • O. Camacho
    UCLA, Los Angeles, USA
  • A. Halavanau, R. Robles
    SLAC, Menlo Park, California, USA
 
  Funding: DE-SC0009914
Experiments foreseen at FACET-II, including dielectric plasma wakefield acceleration and linear collider tests, call for electron beams with highly asymmetric transverse emittances - so called "flat beams". A canonical recipe for the generation of such beams is injecting a magnetized beam at a waist into an appropriately tuned skewed quadrupole triplet channel. However, due to the intense non-linear space-charge forces that dominate nC bunches, this method presents difficulties in maintaining the flatness. We proceed with generalized round-to-flat-beam (RTFB) transformation, which takes into account the non-negligible divergence of the beam at the channel entrance, using a quartet of skewed quadrupoles. Our analytical results are further optimized in ELEGANT and GPT simulation programs and applied to the case of the FACET-II beamline. Non-ideal cathode spot distributions obtained from recent FACET-II experiments are used for accurate numerical modeling. Tolerances to quadrupole strengths and alignment errors are also considered, with an eye towards developing hardware specifications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK045  
About • Received ※ 03 June 2022 — Revised ※ 24 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK050 Linac Optics Optimization with Multi-Objective Optimization linac, optics, lattice, controls 572
 
  • I. Neththikumara, T. Satogata
    ODU, Norfolk, Virginia, USA
  • R.M. Bodenstein, S.A. Bogacz, T. Satogata
    JLab, Newport News, Virginia, USA
  • A. Vandenhoeke
    ULB, Bruxelles, Belgium
 
  Funding: This material is based upon work supported by the U.S. Department of Energy under contract DE-AC05-06OR23177.
The beamline design of recirculating linacs requires special attention to avoid beam instabilities due to RF wakefields. A proposed high-energy, multi-pass energy recovery demonstration at CEBAF uses a low beam current. Stronger focusing at lower energies is necessary to avoid beam breakup(BBU) instabilities, even with this small beam current. The CEBAF linac optics optimization balances over-focusing at higher energies and beta excursions at lower energies. Using proper mathematical expressions, linac optics optimization can be achieved with evolutionary algorithms. Here, we present the optimization process of North Linac optics using multi-objective optimization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK050  
About • Received ※ 31 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK055 Designing Linear Lattices for Round Beam in Electron Storage Rings Using SLIM resonance, coupling, emittance, lattice 592
 
  • Y. Li, R.S. Rainer
    BNL, Upton, New York, USA
 
  Funding: This research used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office ofScience by Brookhaven National Laboratory under Contract No. DE-SC0012704.
For some synchrotron light source beamline applications, a round beam is preferable to a flat one. A conventional method of obtaining round beam in an electron storage ring is to shift its tune close to a linear difference resonance. The linearly coupled beam dynamics is analyzed with perturbation theories, which have certain limitations. In this paper, we adopt the Solution by LInear Matrices (SLIM) analysis to calculate exact beam sizes to design round beam lattices. The SLIM analysis can deal with a generally linearly coupled accelerator lattice. The effects of various coupling sources on beam emittances and sizes can be studied within a self-consistent frame. Both the on- and off-resonance schemes to obtain round beams are explained with examples. Commonly used radiator devices, such as planar wigglers and undulators, can be incorporated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK055  
About • Received ※ 16 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS010 Beam Dynamics and Drive Beam Losses Within a Planar Dielectric Wakefield Accelerator wakefield, acceleration, emittance, focusing 641
 
  • T.J. Overton, Y.M. Saveliev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • T.H. Pacey, Y.M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: Science and Technology Funding Council (STFC) Student Grant
Beam-driven dielectric wakefield accelerators (DWA) have the potential to provide accelerating gradients in the GV/m range. The transverse dynamics in such devices need to be understood to avoid instabilities over long transport distances and facilitate beam matching to specific applications (e.g. FELs). This presentation details simulation studies of the magnitude of beam-breakup instability (BBU) in planar dielectric lined waveguides (DLWs). These are for DWA drive beams, with high charge and momentum that can be produced at current facilities. Using a series of perpendicular DLW segments has been proposed to control instabilities over larger distances. Using self-developed software, the beam dynamics of a drive beam within a DLW are simulated and the magnitude of beam losses along a DLW of varying lengths calculated and beam quality preservation investigated. Methods to reduce transverse instabilities have been explored, and the impact of these on the length of a possible DWA acceleration stage are investigated. An acceleration stage with m-scale length, consisting of multiple alternating planar DLWs, is suggested and preservation of beam quality along this distance is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS010  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS012 Simulation Studies of Drive Beam Instability in a Dielectric Wakefield Accelerator wakefield, simulation, GUI, focusing 645
 
  • W.H. Tan, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • A. Huebl, R. Jambunathan, R. Lehé, A. Myers, T. Rheaume, J.-L. Vay, W. Zhang
    LBNL, Berkeley, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the US DOE award DE-SC0018656 with NIU and DE-AC02-06CH11357 with ANL. This work used resources from NERSC, supported by DOE contract DE-AC02-05CH11231. This research used WarpX, which is supported by the US DOE Exascale Computing Project. Primary WarpX contributors are with LBNL, LLNL, CEA-LIDYL, SLAC, DESY, CERN, and Modern Electron.
Beam-driven collinear wakefield acceleration using structure wakefield accelerators promises a high gradient acceleration within a smaller physical footprint. Sustainable extraction of energy from the drive beam relies on precise understanding of its long term dynamics and the possible onset or mitigation of the beam instability. The advance of computational power and tools makes it possible to model the full physics of beam-driven wakefield acceleration. Here we report on the long-term beam dynamics studies of a drive beam considering the example of a dielectric waveguide using high fidelity particle-in-cell simulations performed with WarpX.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS012  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS019 The New SPARC_LAB RF Photo-Injector gun, operation, solenoid, vacuum 671
 
  • D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F. Cardelli, G. Costa, M. Del Franco, G. Di Pirro, L. Faillace, M. Ferrario, G. Franzini, A. Gallo, A. Giribono, L. Piersanti, L. Sabbatini, A. Stella, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • A. Battisti, E. Chiadroni, G. Di Raddo, A. Liedl, V.L. Lollo, L. Pellegrino, R. Pompili, S. Romeo, V. Shpakov, C. Vaccarezza, F. Villa
    LNF-INFN, Frascati, Italy
  • M. Carillo, E. Chiadroni
    Sapienza University of Rome, Rome, Italy
  • A. Cianchi, M. Galletti
    Università di Roma II Tor Vergata, Roma, Italy
 
  A new RF photo-injector has been designed, realized and successfully installed at the SPARC_LAB facility (INFN-LNF, Frascati, Rome). It is based on a 1.6 cell RF gun fabricated with the new brazing free technology recently developed at the National Laboratories of Frascati. The electromagnetic design has been optimized to have a full compensation of the dipole and quadrupole field components introduced by the coupling hole with an improvement of the effective pumping speed with two added pumping ports. The gun is overcoupled (\beta=2) to reduce the filling time and to allow the operation with short RF pulses. The overall injector integrates a new solenoid with a remote control of the transverse position and a variable skew quadrupole for the compensation of residual quadrupole field components. It also allows an on axis laser injection system with the last mirror in air, and the possibility of a future integration of an X/C band cavity linearizer. In the paper we report the main characteristics of the electromagnetic and mechanical design and the low and high power test results that shows the extremely good perfomances of the new device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS019  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS021 The New C Band Gun for the Next Generation RF Photo-Injectors gun, cathode, brightness, operation 679
 
  • D. Alesini, M. Ferrario, A. Giribono, A. Gizzi, L. Piersanti, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • F. Cardelli, G. Di Raddo, L. Faillace, S. Lauciani, A. Liedl, L. Pellegrino, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • G. Castorina
    AVO-ADAM, Meyrin, Switzerland
  • M. Croia
    ENEA Casaccia, Roma, Italy
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
  • G. Pedrocchi
    SBAI, Roma, Italy
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA No 101004730 and INFN Commission V.
RF photo-injectors are widely used in modern facilities, especially in FEL, as very low-emittance and high-brightness electron sources. Presently, the RF technology mostly used for RF guns is the S band (3 GHz) with typical cathode peak fields of 80-120 MV/m and repetition rates lower than 120 Hz. There are solid reasons to believe that the frequency step-up from S band to C band (6 GHz) can provide a strong improvement of the beam quality due to the potential higher achievable cathode field (>160 MV/m) and higher repetition rate (that can reach the kHz level). In the contest of the European I.FAST project, a new C band gun has been designed and will be realized and tested. It is a 2.5 cell standing wave cavity with a four port mode launcher, designed to operate with short RF pulses (<300 ns) and cathode peak field larger than 160 MV/m. In the paper we present the electromagnetic and thermo-mechanical design and the results of the prototyping activity and rf measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS021  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIYGD2 The Present Status and Future Plan with Charge Stripper Ring at RIKEN RIBF cyclotron, acceleration, factory, ion-source 796
 
  • H. Imao
    RIKEN Nishina Center, Wako, Japan
 
  RIKEN RI Beam Factory (RIBF), providing the world’s most intense heavy-ion beams more than 345 AMeV, is a leading facility for generating in-flight RI beams. RIBF has been steadily developing its performance after since 2006. In particular, the beam intensity of uranium beams, which is important to produce in-flight fission RI beams, was drastically increased by a factor of 240 compared to 2008. For further intensity upgrade of the uranium beams, the total charge stripping efficiency less than 5% of two strippers, He gas and rotating graphite sheet disk strippers, is a serious bottleneck. A new acceleration scheme with charge stripper rings (CSRs) as a cost-effective way to enhance the charge stripping efficiency has been proposed. The CSR recycles beams other than the selected charge state that was previously dumped. These beams are orbited in the CSR while suppressing emittance growth, and then re-enter the stripper. The CSR is being studied as a future plan, aiming at a 10-fold increase in the intensity of the uranium beams. The present status and the future plan with the CSR at RIBF will be presented.  
slides icon Slides TUIYGD2 [4.735 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIYGD2  
About • Received ※ 13 June 2022 — Revised ※ 19 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST032 SLS 2.0, the Upgrade of the Swiss Light Source emittance, lattice, storage-ring, injection 925
 
  • A. Streun
    PSI, Villigen PSI, Switzerland
 
  The Swiss Light Source (SLS) will be upgraded by replacing the storage ring in the existing hall in 2023–24. The SLS lattice build from 12~triple-bend arcs operating at 2.4 GeV is replaced by a 12x7-BA lattice operating at 2.7 GeV to increase hard X-ray brightness by a factor 60. The layout is constrained by the existing tunnel to 288 m circumference, nevertheless a low emittance of 158 pm is realized using longitudinal gradient and reverse bends. Dynamic aperture is sufficient to start with classical injection based on a 4-kicker bump. An upgrade path for on-axis injection with fast kickers has been implemented. Small beam pipes of 18 mm inner diameter and corresponding reduction of magnet bores, and the use of permanent magnets for all bending magnets enables a densely packed lattice and contributes most to a reduction of total power consumption of the facility by 30%.
On behalf of the SLS 2.0 Team. Technical Design Report: https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A39635
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST032  
About • Received ※ 16 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST055 Toward Machine Learning-Based Adaptive Control and Global Feedback for Compact Accelerators controls, feedback, diagnostics, electron 991
 
  • F.W. Cropp V, P. Musumeci
    UCLA, Los Angeles, USA
  • D. Filippetto, A. Gilardi, S. Paiagua, D. Wang
    LBNL, Berkeley, California, USA
  • A. Scheinker
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by the DOE Office of Science Graduate Student Research (SCGSR) program, by the DOE Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231, … continued
The HiRES beamline at Lawrence Berkeley National Laboratory (USA) is a state-of-the-art compact accelerator providing ultrafast relativistic electron pulses at MHz repetition rates, for applications in ultrafast science and for particle accelerator science and technology R&D. Using HiRES as testbed, we seek to apply recent developments in machine learning and computational techniques for machine-learning-based adaptive control, and eventually, a full control system based on global feedback. The ultimate goal is to demonstrate the benefits of such a suite of controls to UED, including increased temporal and spatial resolution. Concrete steps toward these goals are presented, including automatic, model-independent tuning for accelerators, and energy virtual diagnostics with direct application to improving UED temporal resolution.
… [continued from below] by the DOE Office of Science, Office of High Energy Physics under contract number 89233218CNA000001 and DE-AC02-05CH11231 and by the NSF under Grant No. PHY-1549132.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST055  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST059 PyEmittance: A General Python Package for Particle Beam Emittance Measurements with Adaptive Quadrupole Scans emittance, software, simulation, experiment 1003
 
  • S.A. Miskovich, A.L. Edelen, C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  The emittance of a particle beam is a critically important parameter for many particle accelerator applications. Its measurements guide the initial tuning of an accelerator and are typically done using quadrupole or wire scans. Quadrupole scans are time-intensive, and it can be difficult to determine scan values that provide a good emittance measurement. To address this issue, we describe an adaptive quadrupole scan method that automates the determination of the scan range. With a given initial set of scanning values, our method adapts the range to capture the waist of the beam, and returns the Twiss parameters and a measure of the beam matching at the measurement screen. With the added capability to repeat beam size measurements when needed, this method provides a reliable measurement of the emittance even with sub-optimal initial conditions. To efficiently integrate these measurements into Python-based machine learning optimizations, the method was developed into a Python package, PyEmittance, at the SLAC National Accelerator Laboratory. We present the experimental tests of PyEmittance as performed at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Test (FACET-II).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST059  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT046 Electron Transport for the LCLS-II-HE Low Emittance Injector diagnostics, emittance, dipole, cryomodule 1103
 
  • Y.M. Nosochkov, C. Adolphsen, R. Coy, C.E. Mayes, T.O. Raubenheimer, M.D. Woodley
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515.
The Low Emittance Injector (LEI) is a recent addition to the LCLS-II High Energy (LCLS-II-HE) Project under design at SLAC National Accelerator Laboratory. It will provide a second beam source capable of producing a low emittance electron beam that increases the XFEL photon energy reach to 20 keV. The LEI will include an SRF electron gun, a buncher system, a 1.3 GHz cryomodule, and a beam transport system with a connection to the LCLS-II beamline and a stand-alone diagnostic line. The LEI transport beamlines and diagnostic are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT046  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT065 Dispersion-Free Steering Beam Based Alignment at SwissFEL undulator, FEL, electron, alignment 1163
 
  • E. Ferrari, M. Calvi, R. Ganter, C. Kittel, E. Prat, S. Reiche, T. Schietinger
    PSI, Villigen PSI, Switzerland
  • C. Kittel
    University of Malta, Information and Communication Technology, Msida, Malta
 
  Micron-level alignment of the undulator line is required for successful operation of linear accelerator based high gain free electron lasers to produce powerful radiation at X-rays’ wavelengths. Such precision in the straightness of the trajectory allows for an optimal transverse superposition between the electrons and the photon beam. This is extremely challenging and can only be achieved via beam-based techniques. In this paper we will report on the dispersion-free steering approach implemented at SwissFEL, that helped achieving improved performance for both the hard and soft X-ray beamlines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT065  
About • Received ※ 16 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK005 Mitigation of Parasitic Losses in the Quadrupole Resonator Enabling Direct Measurements of Low Residual Resistances of SRF Samples niobium, SRF, cavity, simulation 1196
 
  • S. Keckert, R. Kleindienst, J. Knobloch, F. Kramer, O. Kugeler, D.B. Tikhonov
    HZB, Berlin, Germany
  • W. Ackermann, H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • X. Jiang, A.O. Sezgin, M. Vogel
    University Siegen, Siegen, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  The quadrupole resonator (QPR) is a dedicated sample-test cavity for the RF characterization of superconducting samples in a wide temperature, RF field and frequency range. Its main purpose are high resolution measurements of the surface resistance with direct access to the residual resistance thanks to the low frequency of the first operating quadrupole mode. Besides the well-known high resolution of the QPR, a bias of measurement data towards higher values has been observed, especially at higher harmonic quadrupole modes. Numerical studies show that this can be explained by parasitic RF losses on the adapter flange used to mount samples into the QPR. Coating several micrometer of niobium on those surfaces of the stainless steel flange that are exposed to the RF fields significantly reduced this bias, enabling a direct measurement of a residual resistance smaller than 5 nano-Ohm at 2 K and 413 MHz.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK005  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS006 FILO: A New Application to Correct Optics in the ESRF-EBS Storage Ring optics, SRF, lattice, operation 1401
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Farvacque, L. Hoummi, T.P. Perron, B. Roche, B. Vedder, S.M. White
    ESRF, Grenoble, France
 
  A new optics correction application (Fit and Improvement of Linear Optics, FILO) was designed and set in place for the ESRF-EBS storage ring. The widely used software LOCO* is not available at ESRF and despite a few trials to set it in operation, it has been decided to write a new code. The application is flexible, may be used via the control system simulators and is adapted to a user friendly operation thanks to a wizard mode. Some features of LOCO are copied over, some others are yet to be implemented. The measurement of on and off-energy response matrices using slow or fast steerers is integrated in the same application. Results obtained with this application are presented together with an overview of the future developments.
*J Safranek, Experimental determination of storage ring optics using orbit response measurements, https://doi.org/10.1016/S0168-9002(97)00309-4
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS006  
About • Received ※ 19 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOZSP1 Longitudinal Bunch Shaping Using an X-Band Transverse Deflecting Cavity Powered by Wakefield Power Extractor at Argonne Wakefield Accelerator Facility wakefield, electron, simulation, acceleration 1655
 
  • S.Y. Kim, G. Chen, D.S. Doran, W. Liu, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • A. Bibian, C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This project is supported under DoE SBIR Phase I Grant No. DE-SC0021733. This work is also supported by Department of Energy, Office of Science, under contract No. DEAC02-06CH11357.
Longitudinal bunch shaping using transverse deflecting cavities (TDC) was recently proposed*. This configuration is well suited for shaping the current profile of high-charge bunches since it does not use dipole magnets, and therefore, is not prone to deleterious effects arising from coherent synchrotron radiation. An intercepting mask located downstream of the first TDC, which introduce a spatiotemporal correlation, transversely shape the beam. Downstream of the second TDC, upon removal of the cross-plane correlation, the bunch is temporally shaped. In this paper, we investigate longitudinal bunch shaping with an X-band TDC powered by an X-band, short-pulse wakefield Power Extraction and Transfer Structure (PETS), where the wakefield from the drive beam propagating through the PETS is the power source. We describe the RF designs of the X-band TDC and the configuration of the overall shaping system. Finally, we explore via beam-dynamics simulations the performances of the proposed shaper and its possible application to various bunch shapes relevant to beam-driven acceleration and coherent radiation generation.
*Gwanghui Ha et al., Phys. Rev. Accel. Beams 23, 072803, 2020
 
slides icon Slides WEOZSP1 [6.235 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOZSP1  
About • Received ※ 14 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST008 Optics Correction Strategy for Run 3 of the LHC optics, coupling, MMI, injection 1687
 
  • T.H.B. Persson, F.S. Carlier, A. Costa Ojeda, J. Dilly, V. Ferrentino, E. Fol, H. García Morales, M. Hofer, E.J. Høydalsvik, J. Keintzel, M. Le Garrec, E.H. Maclean, L. Malina, F. Soubelet, R. Tomás García, A. Wegscheider, L. van Riesen-Haupt
    CERN, Meyrin, Switzerland
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  After almost 4 years of shutdown the LHC is again operational in 2022. Experience from the previous Long Shutdown (LS) has shown that the local errors around the triplet magnets changed significantly and it is likely we will again see different errors in 2022. In the LHC there is an interplay between the linear and the nonlinear correction which can make the corrections difficult and time-consuming to find. In this article, we describe the measurements and corrections performed during the commissioning in 2022 in order to control both the linear and the nonlinear optics to high precision.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST008  
About • Received ※ 08 June 2022 — Revised ※ 25 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST017 Design of a Collimation Section for the FCC-ee collimation, collider, optics, operation 1722
 
  • M. Hofer, A. Abramov, R. Bruce, K. Oide, F. Zimmermann
    CERN, Meyrin, Switzerland
  • M. Moudgalya, T. Pieloni
    EPFL, Lausanne, Switzerland
  • K. Oide
    KEK, Ibaraki, Japan
 
  The design parameters of the FCC-ee foresee operation with a total stored beam energy of about 20 MJ, exceeding those of previous lepton colliders by almost two orders of magnitude. Given the inherent damage potential, a halo collimation system is studied to protect the machine hardware, in particular superconducting equipment such as the final focus quadrupoles, from sudden beam loss. The different constraints that led to dedicating one straight section to collimation will be outlined. In addition, a preliminary layout and optics for a collimation insertion are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST017  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST048 Excitation of Very High Gradient Plasma Wakefields From Nanometer Scale Beams plasma, wakefield, focusing, simulation 1806
 
  • P. Manwani, H.S. Ancelin, G. Andonian, D.R. Chow, N. Majernik, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
  • G. Andonian
    RadiaBeam, Marina del Rey, California, USA
  • R. Robles
    SLAC, Menlo Park, California, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
  • M. Yadav
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was performed with the support of the US Department of Energy under Contract No. DESC0009914.
The plasma based terawatt attosecond project at SLAC, termed PAX, offers near mega-Ampere beams that could be used to demonstrate plasma wakefield acceleration at very high gradients (TV/m). The beam has a large aspect ratio which allows it to be used at high densities since the longitudinal beam size is lower than the plasma skin depth. This beam can be focused using a permanent magnitude quadrupole (PMQ) triplet to further reduce its transverse size. Since the beam is extremely short compared to the plasma skin depth, it behaves like a delta-function perturbation to the plasma. This reduces the expected focusing effect of the ion column and simulations show that only the tail of the beam is notably focused and decelerated. This scenario is investigated with attendant experimental considerations discussed. The creation of the witness beam by the deceleration of the tail of the beam is also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST048  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT007 First Interaction Region Local Coupling Corrections in the LHC Run 3 coupling, optics, MMI, experiment 1838
 
  • F. Soubelet, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Ö. Apsimon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This research is supported by the LIV. DAT Center for Doctoral Training, STFC and the European Organization for Nuclear Research
The successful operation of large scale particle accelerators depends on the precise correction of unavoidable magnetic field or magnet alignment errors present in the machine. During the LHC Run 2, local linear coupling in the interaction regions (IR) was shown to have a significant impact on the beam size, making its proper handling a necessity for Run 3 and the High Luminosity LHC (HL-LHC). A new approach to accurately minimise the local IR linear coupling based on correlated external variables such as the |C-| had been proposed, which relies on the application of a rigid waist shift in order to create an asymmetry in the IR optics. In this contribution, preliminary corrections from the 2021 beam test and the early 2022 commissioning are presented, as well as first results of the new method’s experimental configuration tests in the LHC Run 3 commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT007  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT008 Supervised Machine Learning for Local Coupling Sources Detection in the LHC coupling, network, optics, simulation 1842
 
  • F. Soubelet, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Ö. Apsimon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This research is supported by the LIV. DAT Center for Doctoral Training, STFC and the European Organization for Nuclear Research
Local interaction region (IR) linear coupling in the LHC has been shown to have a negative impact on beam size and luminosity, making its accurate correction for Run 3 and beyond a necessity. In view of determining corrections, supervised machine learning has been applied to the detection of linear coupling sources, showing promising results in simulations. An evaluation of different applied models is given, followed by the presentation of further possible application concepts for linear coupling corrections using machine learning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT008  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT010 Progress on Action Phase Jump for LHC Local Optics Correction optics, simulation, operation, interaction-region 1850
 
  • J.F. Cardona, Y. Rodriguez Garcia
    UNAL, Bogota D.C, Colombia
  • H. García Morales, M. Hofer, E.H. Maclean, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Y. Rodriguez Garcia
    UAN, Bogotá D.C., Colombia
 
  The correction of the local optics at the Interaction Regions of the LHC is crucial to ensure a good performance of the machine. This is even more important for the future LHC upgrade, HL-LHC, where the optics is more sensitive to magnetic errors. For that reason, it is important to explore alternative techniques for local optics corrections. In this paper, we evaluate the performance of the Action Phase Jump method for optics correction in the LHC and the HL-LHC and explore ways to integrate this technique in regular operations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT010  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT011 Modelling FCC-ee Using MADX solenoid, lattice, emittance, radiation 1854
 
  • L. van Riesen-Haupt, H. Burkhardt, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
 
  We present the latest developments for simulating FCC-ee using CERN’s MADX software. Along with updated benchmark studies, we describe how the latest MADX updates can facilitate the simulation of FCC-ee design features, including improvements in tapering and different options for implementing a tilted solenoid.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT011  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT034 Reconfiguration of RHIC Straight Sections for the EIC electron, hadron, focusing, kicker 1916
 
  • C. Liu, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, S. Verdú-Andrés, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Electron-Ion Collider (EIC) will be built in the existing Relativistic Heavy Ion Collider (RHIC) tunnel with the addition of electron acceleration and storage rings. The two RHIC rings will be reconfigured as a single Hadron Storage Ring (HSR) for accelerating and storing ion beams. The proton beam energy will be raised from 255 to 275 GeV to achieve the desired center-of-mass energy range: 20’140 GeV. It is also mandatory to operate the HSR with a constant revolution frequency over a large energy range (41’275 GeV for protons) to synchronize with the Electron Storage Ring (ESR). These and other requirements/challenges dictate modifications to RHIC accelerators. This report gives an overview of the modifications to the RHIC straight sections together with their individual challenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT034  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT042 Designing the EIC Electron Storage Ring Lattice for a Wide Energy Range solenoid, electron, dipole, lattice 1946
 
  • D. Marx, J.S. Berg, J.S. Berg, J. Kewisch, Y. Li, Y. Li, C. Montag, V. Ptitsyn, V. Ptitsyn, S. Tepikian, F.J. Willeke, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • B.R. Gamage, V.S. Morozov, V.S. Morozov
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter, G.H. Hoffstaetter, D. Sagan, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-SC0012704, by Jefferson Science Associates, LLC, under Contract No. DE-AC05-06OR23177, by UT-Battelle, LLC, under contract DE-AC05-00OR22725, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) will collide electrons with hadrons at center-of-mass energies up to 140 GeV (in the case of electron-proton collisions). A 3.8-kilometer electron storage ring is being designed, which will store electrons with a range of energies up to 18 GeV for collisions at one or two interaction points. At energies up to 10 GeV the arcs will be tuned to provide 60 degree phase advance per cell in both planes, whereas at top energy of 18 GeV a 90 degree phase advance per cell will be used, which largely compensates for the horizontal emittance increase with energy. The optics must be matched at three separate energies, and the different phase-advance requirements in both the arc cells and the straight sections make this challenging. Moreover, the spin rotators must fulfill requirements for polarization and spin matching at widely different energies while satisfying technical constraints. In this paper these challenges and proposed solutions are presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT042  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT043 Dynamic Aperture of the EIC Electron Storage Ring sextupole, lattice, optics, electron 1950
 
  • Y.M. Nosochkov, Y. Cai
    SLAC, Menlo Park, California, USA
  • J.S. Berg, J. Kewisch, Y. Li, D. Marx, C. Montag, S. Tepikian, H. Witte
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515, by Brookhaven Science Associates, LLC under Contract DE-SC0012704, and by the Ernest Courant Traineeship in Accelerator Science and Technology Award No. DE-SC0020375.
The Electron Ion Collider (EIC) is under design at Brookhaven National Laboratory. The EIC aims at providing high luminosity and high polarization collisions for a large range of beam energies. Dynamic aperture (DA) of the EIC Electron Storage Ring (ESR) must be sufficiently large in both transverse and momentum dimensions. The latter is a challenge due to low-beta optics in up to two interaction regions (IR). We have developed an advanced technique for efficient non-linear chromaticity compensation compatible with the different ESR lattice configurations at different energies. The solution for the most challenging lattice with two IRs at 18 GeV is presented. The lattice is then evaluated with magnet errors, where the error tolerances are determined for reaching the desired DA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT043  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK015 The Electron-Ion Collider Hadron Storage Ring 10 O’clock Switchyard Design dipole, hadron, electron, cavity 2071
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • T. Satogata, W. Wittmer
    JLab, Newport News, Virginia, USA
 
  The Electron-Ion Collider (EIC) Hadron Storage Ring (HSR) will be composed of the current Relativistic Heavy Ion Collider (RHIC) yellow ring sextants with the exception of the 1 o’clock and the 11 o’clock arc. These two arcs use the existing blue ring inner (1 o’clock) and outer (11 o’clock) magnetic lattice for 275 GeV proton operation. The inner yellow 11 o’clock arc is used for 41 GeV energy operation. A switching magnet must be used to guide the hadron beam from the low and high energy arc respectively into the shared arc. This report provides the necessary lattice configuration, magnetic fields, and optics for the 10 o’clock utility straight section (USS) switchyard for both high and low energy configuration while providing the necessary space allocations and beam specifications for accelerator systems such as an additional radiofrequency cavity and beam dump.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK015  
About • Received ※ 01 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK026 Commissioning of the ELENA Electrostatic Transfer Lines for the Antimatter Facility at CERN experiment, proton, extraction, antiproton 2110
 
  • Y. Dutheil, W. Bartmann, C. Carli, M.A. Fraser, D. Gamba, L. Ponce
    CERN, Meyrin, Switzerland
 
  ELENA is a small synchrotron ring that decelerates antiprotons down to a kinetic energy of 100 keV. With an experimental complex capable of housing up to 9 different experiments operating simultaneously, the transfer line design needed to be highly flexible. The low energy of the beam transported allowed the exploitation of electrostatic devices instead of magnets, to simplify design, production and operation. This contribution presents the systematic characterisation of the beam optics at the different experimental handover locations during beam commissioning using H ions from an external source, as well as the performance of the lines in operation with antiprotons. Finally, the effect of stray fields created by the experimental setup will be presented and compared with the first measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK026  
About • Received ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK032 Fast Electromagnetic Models of Existing Beamline Simulations simulation, focusing, experiment, proton 2130
 
  • S. Padden, E. Kukstas, P. Pusa, V. Rodin, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • S. Padden, V. Rodin, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The AD-ELENA complex decelerates antiprotons to ener- gies of 100 keV before transport to experiments through elec- trostatic transfer lines. Transfer line optics are traditionally designed from a lattice based approach and are unaffected by external effects. Presented is a method of rapidly proto- typing MAD-X simulations into G4Beamline models which propagate particles via electromagnetic fields rather than idealised optical lattice parameters. The transfer line to the ALPHA experiment is simulated in this approach. Due to the presence of fringe fields disagreement is found between the two models. Using an error minimisation technique, revised quadrupole strengths are found which improve agreement by 30% without any manual adjustment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK032  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS022 Detailed Analysis of Transverse Emittance of the FLUTE Electron Bunch emittance, laser, simulation, electron 2289
 
  • T. Schmelzer, E. Bründermann, A.-S. Müller, M.J. Nasse, R. Ruprecht, J. Schäfer, M. Schuh, N.J. Smale, P. Wesolowski
    KIT, Karlsruhe, Germany
 
  The compact and versatile linear accelerator-based test facility FLUTE (Ferninfrarot Linac- Und Test-Experiment) is operated at KIT. Its primary goal is to serve as a platform for a variety of accelerator R\&D studies like the generation of strong ultra-short terahertz pulses. The amplitude of the generated coherent THz pulses is proportional to the square number of particles in the bunch. With the transverse emittance a measure for the transverse particle density can be determined. It is therefore a vital parameter in the optimization for operation. In a systematic study, the transverse emittance of the electron beam was measured in the FLUTE injector. A detailed analysis considers different influences such as the bunch charge and compares this with particle tracking simulations carried out with ASTRA. In this contribution, the key findings of this analysis are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS022  
About • Received ※ 08 June 2022 — Revised ※ 23 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS057 Simulation Studies and Machine Learning Applications at the Coherent electron Cooling experiment at RHIC LEBT, electron, emittance, solenoid 2387
 
  • W. Lin, J.A. Crittenden, G.H. Hoffstaetter, M.A. Sampson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Y.C. Jing
    BNL, Upton, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Funding: Work supported by the U.S. National Science Foundation under Award PHY-1549132, and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Coherent electron cooling is a novel cooling technique which cools high-energy hadron beams rapidly by amplifying the modulation induced by hadrons in electron bunches. The Coherent electron cooling (CeC) experiment at Brookhaven National Laboratory (BNL) is a proof-of-principle test facility to demonstrate this technique. To achieve efficient cooling performance, electron beams generated in the CeC need to meet strict quality standards. In this work, we first present sensitivity studies of the low energy beam transport (LEBT) section, in preparation for building a surrogate model of the LEBT line in the future. We also present preliminary test results of a machine learning (ML) algorithm developed to improve the efficiency of slice-emittance measurements in the CeC diagnostic line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS057  
About • Received ※ 06 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOXGD3 Commissioning Status of the RAON Superconducting Accelerator cryomodule, MMI, linac, rfq 2399
 
  • H.J. Kim, Y.J. Choi, Y.S. Chung, J. Heo, I.S. Hong, J.-H. Jang, D. Jeon, H. Jin, G.D. Kim, Y.H. Kim, J.W. Kwon, S. Lee, B.-S. Park, M.J. Park, C.W. Son
    IBS, Daejeon, Republic of Korea
  • D.M. Kim
    KUS, Sejong, Republic of Korea
  • E.H. Lim
    Korea University Sejong Campus, Sejong, Republic of Korea
  • S.H. Moon
    UNIST, Ulsan, Republic of Korea
 
  The Rare isotope Accelerator Complex for ON-line experiments (RAON) has been proposed as a multi-purpose accelerator facility for providing beams of exotic rare isotopes of various energies. It can deliver ions from hydrogen (proton) to uranium. Protons and uranium ions are accelerated up to 600 MeV and 200 MeV/u respectively. It can provide various rare isotope beams which are produced by isotope separator on-line system. The RAON injector was successfully commissioned in 2021 to study the initial beam parameters from the main technical systems, such as the ECR ion source and RFQ, and to find the optimized LEBT and MEBT setpoints and matching conditions. In this paper, we present the current commissioning status of the RAON injector in preparation for the upcoming SCL3 beam commissioning.  
slides icon Slides THOXGD3 [6.508 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOXGD3  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXSP1 A New Compact 3 GeV Light Source in Japan vacuum, cavity, electron, emittance 2402
 
  • N. Nishimori
    QST, Tokai, Japan
 
  A new 3 GeV light source with a circumference of 350 m and an MBA lattice has been officially funded and is being constructed in north-eastern Japan. Aiming at stable and high-performance operations with an emittance of about 1 nm rad, various design and R&D activities are being performed: the four bend achromatic lattice using BQ combined function magnets; the compact RF system using a TM020 mode and in-cavity compact HOM absorbers; the in-vacuum off-axis injection scheme enabling stored beam oscillation-free injections with a small injection beam amplitude; the injector linac composed of a thermionic E-gun and C-band accelerators with a capability of extension to feed a future SX-FEL driver, and so on. The installation of accelerator components is ongoing. The talk will include the overall design of the light source, R&D results, and the latest construction status.  
slides icon Slides THIXSP1 [15.084 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THIXSP1  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOYSP1 Construction and Measurement of a Tuneable Permanent Magnet Quadrupole for Diamond Light Source permanent-magnet, simulation, radiation, HOM 2424
 
  • A.R. Bainbridge, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A.G. Hinton, N. Krumpa
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • I.P.S. Martin, W. Tizzano
    DLS, Oxfordshire, United Kingdom
 
  Permanent magnets (PMs) are becoming an attractive proposition as a green and efficient replacement for electromagnets in particle accelerators. The Zero-Power Tuneable Optics (ZEPTO) collaboration between STFC and CERN has demonstrated that traditional limitations of PM technology, such as the ability to change the flux density in the magnet aperture, can be overcome. Moving PM blocks relative to fixed steel structures that define the field, the strength may be changed while suitable field homogeneity is maintained. A new ZEPTO variant has been developed in conjunction with Diamond Light Source (DLS) to demonstrate the technology on a real accelerator. This magnet features a number of crucial design innovations over previous generations of ZEPTO magnets that improve the convenience and versatility of PM systems and demonstrate that they can be deployed in many situations. We present the construction and measurement results of this new magnet and outline the planned data collection whilst installed on DLS. We analyse its performance relative to design and discuss the new features with focus on the real-world implications of PM technology for current and future accelerators.  
slides icon Slides THOYSP1 [3.675 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOYSP1  
About • Received ※ 30 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST018 The Design of a Second Beamline for the CLEAR User Facility at CERN experiment, focusing, electron, dipole 2479
 
  • L.A. Dyks, R. Corsini, P. Korysko
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
  • P. Burrows, P. Korysko
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  The CERN Linear Electron Accelerator for Research (CLEAR) has been operating as a general user facility since 2017 providing beams for a wide range of user experiments. However, with its current optical layout, the beams available to users are not able to cover every request. To overcome this, a second experimental beamline has been proposed. In this paper we discuss the potential optics of the new line as well as detailing the hardware required for its construction. Branching from the current beamline, via a dogleg chicane that could be used for bunch compression, the new beamline would provide an additional in-air test stand to be available to users. The beamline before the test stand would utilise large aperture quadrupoles to allow the irradiation of large target areas or strong focussing of beams onto a target. In addition to this there would also be further in-vacuum space to install experiments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST018  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST034 Development of Magnetic Harmonics Measurement System for Small Aperture Magnets permanent-magnet, simulation, multipole, data-analysis 2517
 
  • J.M. Hwang, J. Bahng
    Korea University Sejong Campus, Sejong, Republic of Korea
  • E.-S. Kim
    KUS, Sejong, Republic of Korea
 
  Storage ring has been improved to achieve high brightness of x-ray light source by making beam size and beam emittance smaller and enlarging the beam intensity. To achieve requirements such as a small beam emittance, the magnets need to have a larger magnetic field gradient and complex function with small aperture size. Since the complex structure and small beam size accompany with large errors in beam dynamics by high order field distortion of the magnets, it is important to measure the harmonics of the magnet in order to measure and improve it. Traditional field measurement methods such as hall probe and rotating loop have difficulty in measuring the harmonics of a magnet with a small aperture due to restrictions that physical size of the hall sensor and loop-card respectively. We developed Single Stretched Wire (SSW) method for the magnetic field measurement method on a small aperture magnet, in particular harmonics of the magnet. The system consists of a thin wire, accurate actuator system, and voltmeter. We describe the development of the SSW system and the result of the performance test by using our system in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST034  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT003 A First attempt at implementing TRIBs in BESSY III’s Design Lattice lattice, resonance, sextupole, photon 2560
 
  • M. Arlandoo, P. Goslawski, M. Titze
    HZB, Berlin, Germany
 
  At HZB’s BESSY II and PTB’s Metrology Light Source (MLS), resonances and islands in transverse phase space are exploited in a special operation mode usually referred to as Transverse Resonance Island Buckets (TRIBs). This mode provides a second stable orbit well separated from the main orbit and one of its applications in photon science is the ultra-fast switching of the helicity of circularly polarized light pulses. In the context of the conceptual design study of BESSY III, it is under investigation how this special optics mode can be implemented in an MBA structure and how it will impact the photon source parameters. In this paper we present a preliminary attempt at implementing TRIBs in BESSY III’s design lattice, a multi-bend achromat, by breaking the symmetry of the lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT003  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT010 Beam Loss Reduction During Energy Ramp-Up at the SAGA-LS power-supply, storage-ring, acceleration, sextupole 2583
 
  • Y. Iwasaki
    SAGA, Tosu, Japan
 
  The accelerator of the SAGA Light Source (SAGA-LS) consists of a 255 MeV injector linac and a 1.4 GeV storage ring. The energy of the electrons is ramped up to 1.4 GeV in 4 minutes in the storage ring. The electron beam current stored in the storage ring is about 300 mA. At the begging of the energy ramp-up, the electron beam was lost like step function. The lost beam current was normally about 5 mA to 30 mA. To understand the beam loss mechanism, we developed simultaneous image logging system of beam profile in addition to the beam current, the magnets power supplies, and the beam positions using National Instruments PXI. It was found that the vertical beam size was growing in the step-like beam loss process. The small perturbation of the output currents of the quadrupole power supplies caused the vertical beam size growth. By optimizing the ramp-up pattern of the quadrupole power supplies, sextupole power supplies, and the steering power supplies for the orbit control, we have achieved the reduction of the step-like beam loss and total time of the ramp-up.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT010  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT016 Commissioning Simulations for the DIAMOND-II Upgrade MMI, injection, optics, storage-ring 2598
 
  • H.C. Chao, R.T. Fielder, J. Kallestrup, I.P.S. Martin, B. Singh
    DLS, Oxfordshire, United Kingdom
 
  The Diamond-II storage ring, compared to Diamond, improves the natural beam emittance from 2.7 nm to 160 pm and the beam energy from 3 to 3.5 GeV. The number of straight sections is also doubled from 24 to 48 thanks to the modified hybrid six-bend-achromat lattice. To reduce the impact on the existing science program, the dark time period must be minimised. To assist in this aim, storage ring commissioning simulations have been carried out to predict and resolve possible issues. These studies include beam commissioning starting from on-axis first-turn beam threading up to beam based alignment and full linear optics correction with stored beam. The linear optics corrections with insertion devices are also included. The machine characterisations at different stages are compared. Considerations on realistic chamber limitations, error definitions and some commissioning strategies are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT016  
About • Received ※ 19 May 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT045 OPAL Simulations of the MESA Injection System simulation, solenoid, electron, experiment 2697
 
  • S. Friederich
    IKP, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher, C.P. Stoll
    KPH, Mainz, Germany
 
  Funding: This work is supported by the DFG excellence initiative PRISMA+.
The MESA injection system will produce the spin-polarized electron beam for the upcoming accelerator MESA in Germany. The photoemission electron source (STEAM) will deliver 150 uA of spin-polarized electrons from GaAs-based photocathodes for the P2 experiment. Afterwards the low-energy beam transportation system (MELBA) can rotate the spin using two Wien filters and a solenoid for polarization measurements and to compensate for the spin precession in MESA. A chopper and buncher system prepares the phase space for the first acceleration in the normal-conducting pre-booster MAMBO. First OPAL simulation results of MELBA were presented at IPAC’21. Meanwhile these simulations have been extended by a 270-degree-bending alpha magnet as well as the electrostatic and magnetostatic fieldmaps of the Wien filters. Furthermore the fieldmaps of the 4 modules of the pre-accelerator MAMBO have been implemented. Hence, the complete MESA injection system could be simulated in OPAL and the results will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT045  
About • Received ※ 30 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT059 Development of a Transfer Line for LPA-Generated Electron Bunches to a Compact Storage Ring storage-ring, injection, dipole, plasma 2730
 
  • B. Härer, E. Bründermann, D. El Khechen, A.-S. Müller, A.I. Papash, S.C. Richter, R. Ruprecht, J. Schäfer, M. Schuh, C. Widmann
    KIT, Karlsruhe, Germany
  • L. Jeppe
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • A.R. Maier, J. Osterhoff, E. Panofski
    DESY, Hamburg, Germany
  • P. Messner
    University of Hamburg, Hamburg, Germany
 
  The injection of LPA-generated beams into a storage ring is considered to be one of the most prominent applications of laser plasma accelerators (LPAs). In a combined endeavour between Karlsruhe Institute of Technology (KIT) and Deutsches Elektronen-Synchrotron (DESY) the key challenges will be addressed with the aim to successfully demonstrate injection of LPA-generated beams into a compact storage ring with large energy acceptance and dynamic aperture. Such a storage ring and the corresponding transfer line are currently being designed within the cSTART project at KIT and will be ideally suited to accept bunches from a 50 MeV LPA prototype developed at DESY. This contribution presents the foreseen layout of the transfer line from the LPA to the injection point of the storage ring and discusses the status of beams optics calculations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT059  
About • Received ※ 05 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT064 Hall Probe Magnetic Measurement of 50 mm Period PPM Undulator undulator, multipole, sextupole, controls 2744
 
  • S.M. Khan, G. Mishra
    Devi Ahilya University, Indore, India
  • M. Gehlot
    MAX IV Laboratory, Lund University, Lund, Sweden
  • H. Jeevakhan
    NITTTR, Bhopal, India
 
  In this paper, we present the latest upgradation of Hall Probe magnetic measurement system. The Hall Probe measurement system is upgraded with position measuring detectors and 3D F.W. Bell Teslameter. The field integrals and the phase errors are calculated with a new user friendly MATLAB code. The integrated multipoles both normal and skew components are measured and discussed in the paper. The proposed activities on 300 mm length prototype asymmetric undulator and 50 mm quasi period, six period length at Laser Instrumentation and Insertion Device Application laboratory of Devi Ahilya Vishwa Vidyalaya (DAVV), Indore, India has been discussed and design components are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT064  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK001 Variable Permanent Hybrid Magnets for the Bessy III Storage Ring dipole, lattice, HOM, storage-ring 2763
 
  • J. Völker, V. Dürr, P. Goslawski, A. Jankowiak, M. Titze
    HZB, Berlin, Germany
 
  The Helmholtz Zentrum Berlin (HZB) is working on the conceptual design of a successor source to BESSY II, an new BESSY III facility, designed for a beam energy of 2.5GeV and based on a multi-bend achromat (MBA) lattice for a low emittances of 100pm-rad. Bending and focusing magnets in the MBA cells should consist of permanent magnets (PM), to allow for a competitive and compact lattice, to increase the magnetic stability and to decrease the electric power consumption of the machine. However, using pure permanent magnet systems would result in a completely fixed lattice. Therefore, we are developing Variable Permanent Hybrid Magnets (VPHM), combining PM materials like NdFeB with a surrounding soft iron yoke and additional electric coils. This design can achieve the same field strength and field quality as conservative magnets, with only a small fraction of the electric power consumption, and a ca. 10% variability in the field amplitudes. In this paper, design and first optimization results of the magnets will be presented, which are a promising option for the new BESSY III facility, and an estimated reduction in total power consumption for the magnet lattice of up to 80%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK001  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK002 Magnet Design for the PETRA IV Storage Ring dipole, storage-ring, octupole, sextupole 2767
 
  • R. Bartolini, I.V. Agapov, A. Aloev, H.-J. Eckoldt, D. Einfeld, B. Krause, A. Petrov, M. Thede, M. Tischer
    DESY, Hamburg, Germany
  • J. Chavanne
    ESRF, Grenoble, France
 
  The proposed PETRA IV electron storage ring that will replace DESY’s flagship synchrotron light source PETRA III will feature a horizontal emittance as low as 20 pmrad. It is based on a hybrid six-bend achromat lattice. In addition to the storage ring PETRA IV, the Booster Synchrotron and the corresponding transfer line will be renewed. Overall about 4000 magnets will be manufactured. The lattice design require high-gradient quadrupoles, which are unfeasible with conventional steel, used traditionally for normal-conducting magnets. The required gradient is safely reached with the poles, made of Permendur. The bending magnets for the storage ring will be based on permanent magnets. This contribution presents the electromagnetic design of the magnets for the storage ring and booster synchrotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK002  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK004 The Reduction of the Leakage Field of the Injection Septum Magnet in Main Ring of J-PARC septum, operation, injection, proton 2774
 
  • T. Shibata, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
 
  A new injection septum magnet (InjSep) was installed in MR in 2016 for one of the upgrading of beam power of MR. We have measured the leakage field before installation, and it was found from the measurement results that the leakage field at the beam upstream region of the circulating duct was enough smaller than previous InjSep, however we tried to reduce the leakage field further by installation a new magnetic shield. First magnetic shield was produced in 2017, and we installed it in the InjSep. The leakage field was reduced, however the magnetic field of a quadrupole magnet at beam upstream of the InjSep was also reduced slightly. The decrease of the magnetic field of the one of main magnet was not permitted from the requirement of beam optics. In consequently, the first version was failed. The second one was produced in 2018, and we measured the leakage field was measured in Jan. 2019. The leakage field was reduced, while no reduction of the quadrupole magnet. We decided to use the second version for beam operation. The new additional shield was started to use in Nov. 2019.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK004  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK007 Magnet Systems for Korea 4GSR Light Source dipole, emittance, multipole, sextupole 2781
 
  • D.E. Kim, T. Ha, G. Hahn, Y.G. Jung, H.-G. Lee, J. Lee, S. Shin, H.S. Suh
    PAL, Pohang, Republic of Korea
 
  Funding: Work supported by NRF of the Republic of Korea.
A 4th generation storage ring based light source is being developed in Korea since 2021. It features < 100 pm rad emittance, about 800 m circumference, 4 GeV e-beam energy, full energy booster injection, and more than 40 beamlines which includes more than 24 insertion device (ID) beamlines. This machine requires about ~1000 magnets including dipole, longitudinal gradient dipole, transverse gradient dipole, sextupoles, and correctors. The apertures are small and the lattice space requirements are very tight. In this report, a preliminary design of the each magnet is presented with detailed plan for the future.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK007  
About • Received ※ 13 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK009 Design of a Permanent Magnet Based Dipole Quadrupole Magnet dipole, permanent-magnet, operation, multipole 2784
 
  • A.G. Hinton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Kokole, T. Milharčič
    KYMA, Trieste, Italy
  • A. Shahveh
    DLS, Oxfordshire, United Kingdom
  • B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • B.J.A. Shepherd
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Permanent magnet technology can facilitate the design of accelerator magnets with much lower power consumption than traditional resistive electromagnets. By reducing the power requirements of magnets, more sustainable accelerators can be designed and built. At STFC, as part of the I.FAST collaboration, we are working to develop sustainable technologies for future accelerators. As part of this work, we have designed a permanent magnet based dipole-quadrupole magnet with parameters suited to meet the requirements of the proposed Diamond-II upgrade. We present here the magnetic design of the dipole-quadrupole magnet. The design, based on a single sided dipole-quadrupole, uses permanent magnets to generate the field in the magnet bore. The design includes the shaping of the pole tips to reduce multipole errors as well as methods of providing thermal stabilisation using thermal shunts and field tuning using resistive coils. The mechanical design of the magnet is being undertaken by colleagues at Kyma and a prototype of the magnet will soon be built and tested.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK009  
About • Received ※ 06 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK013 Cold Test Results of the FAIR Super-FRS First-of-Series Multiplets and Dipole dipole, sextupole, cryogenics, octupole 2796
 
  • A. Chiuchiolo, A. Beaumont, E.J. Cho, F. Greiner, P. Kosek, M. Michels, H. Müller, C. Roux, H. Simon, K. Sugita, V. Velonas, F. Wamers, M. Winkler, Y. Xiang
    GSI, Darmstadt, Germany
  • H. Allain, V. Kleymenov, A. Madur
    CEA-IRFU, Gif-sur-Yvette, France
 
  Within the collaboration between GSI and CERN, a dedicated cryogenic test facility has been built at CERN (Geneva, Switzerland) in order to perform the site acceptance tests of the 56 Superconducting FRagment Separator cryomodules before their installation at the the Facility for Antiproton and Ion Research (Darmstadt, Germany). Two of the three benches of the CERN test facility were successfully commissioned with the powering tests of the first-of-series multiplets and dipole. The long multiplet, with a warm bore radius of 192 mm, is composed of nine magnets of different type (quadrupole, sextupole, steering dipole and octupole) assembled with Nb-Ti racetrack and cosine-theta coils, mounted in a cold iron yoke and in a common cryostat. This work presents the first results of the cold powering tests at 4.5 K during which dedicated measurements have been implemented for the magnetic characterization of the single magnets up to nominal current (300 A for a long quadrupole) and the study of their crosstalk effects. The results of the acceptance tests will be presented together with the challenges and lessons learnt during the facility commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK013  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK020 Recent Experience from the Large-Scale Deployment of Power Converters with Magnet Energy Recovery operation, controls, experiment, MMI 2809
 
  • K.D. Papastergiou, G. Le Godec, V. Montabonnet
    CERN, Meyrin, Switzerland
 
  A new powering solution was deployed at CERN for transfer lines in the injector complex as part of the LHC injectors upgrade. The new powering uses regenerative power converters to recycle the magnet energy between physics operations. This work gives an overview of the developed technology, the way it is used in the accelerators complex and some results of first period of operation with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK020  
About • Received ※ 03 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS002 Gantry Beamline and Rotator Commissioning at the Medaustron Ion Therapy Center MMI, proton, optics, radiation 2933
 
  • M.T.F. Pivi, L. Adler, G. Guidoboni, G. Kowarik, C. Kurfürst, C. Maderböck, D.A. Prokopovich, I. Strašík
    EBG MedAustron, Wr. Neustadt, Austria
  • G. Kowarik
    GKMT Consulting, Consulting and Project Management, Vienna, Austria
  • M. Pavlovič
    STU, Bratislava, Slovak Republic
  • M.G. Pullia
    CNAO Foundation, Pavia, Italy
  • V. Rizzoglio
    PSI, Villigen PSI, Switzerland
 
  The MedAustron Particle Therapy Accelerator located in Austria, delivers proton beams in the energy range 60-250 MeV/n and carbon ions 120-400 MeV/n for medical treatment in two irradiation rooms, clinically used for tumor therapy. Proton beams up to 800 MeV/n are also provided to a room dedicated to scientific research. Over the last two years, in parallel to clinical operations, we have completed the installation and commissioning of the gantry beam line in a dedicated room, ready for the first patient treatment in early 2022. In this manuscript, we provide an overview of the MedAustron gantry beam commissioning including the world-wide first ’rotator’ system, a rotating beamline located upstream of the gantry and used to match the slowly extracted non-symmetric beams into the coordinate system of the gantry. Using the rotator, all beam parameters at the location of the patient become independent of the gantry rotation angle. Furthermore, both the gantry and the high energy transfer line optics had to be redesigned and adapted to the rotator-mode of operation. A review of the beam commissioning including technical solutions, main results and reference measurements is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS002  
About • Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS006 A Carbon Minibeam Irradiation Facility Concept radiation, proton, linac, target 2947
 
  • M. Mayerhofer, G. Dollinger, M.A. Sammer
    Universität der Bundeswehr Muenchen, Neubiberg, Germany
  • V. Bencini
    CERN, Meyrin, Switzerland
 
  In minibeam therapy, the sparing of deep-seated normal tissue is limited by transverse beam spread caused by small-angle scattering. Contrary to proton minibeams, helium or carbon minibeams experience less deflection, which potentially reduces side effects. To verify this potential, an irradiation facility for preclinical and clinical studies is needed. This manuscript presents a concept for a carbon minibeam irradiation facility based on a LINAC design for conventional carbon therapy. A quadrupole triplet focuses the LINAC beam to submillimeter minibeams. A scanning and a dosimetry unit are provided to move the minibeam over the target and monitor the applied dose. The beamline was optimized by TRAVEL simulations. The interaction between beam and these components and the resulting beam parameters at the focal plane is evaluated by TOPAS simulations. A transverse beamwidth of < 100 µm (σ) and a peak-to-valley (energy) dose ratio of > 1000 results for carbon energies of 100 MeV/u and 430 MeV/u (about 3 cm and 30 cm range in water) whereby the average beam current is about 30 nA. Therefore, the presented irradiation facility exceeds the requirements for hadron minibeam therapy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS006  
About • Received ※ 16 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS008 Physics Design of Electron Flash Radiation Therapy Bemaline at PITZ electron, radiation, simulation, booster 2954
 
  • X.-K. Li, Z. Aboulbanine, Z. Amirkhanyan, M. Groß, M. Krasilnikov, A. Lueangaramwong, R. Niemczyk, A. Oppelt, S. Philipp, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Loisch, F. Obier, M. Schmitz
    DESY, Hamburg, Germany
 
  The Photo Injector Test facility at DESY in Zeuthen (PITZ) is preparing an R&D platform for electron FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and radiation biology based on its unique beam parameters: ps scale bunches with up to 5 nC bunch charge at MHz bunch repetition rate in bunch trains of up to 1 ms in length repeating at 10 Hz. This platform is called FLASHlab@PITZ. The PITZ beam is routinely accelerated to 22 MeV, with a possible upgrade to 250 MeV for VHEE radiotherapy in the future. The 22 MeV beam will be used for dosimetry experiments and studying biological effects in thin samples in the next years. A new beamline to extract and match the beam to the experimental station is under physics design. The main features include: an achromatic dogleg to extract the beam from the PITZ beamline; a sweeper to scan the beam across the sample within 1 ms for tumor painting studies; and an imaging system to keep the beam size small at the sample after scattering in the exit window while maintaining the scan range of the sweeper. In this paper, the beam dynamics with bunch charges from 10 pC to 5 nC in and the preparation of the new beamline will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS008  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS011 Beam Optics Studies for a Novel Gantry for Hadrontherapy dipole, optics, operation, hadrontherapy 2962
 
  • E. Felcini, G. Frisella, A. Mereghetti, M.G. Pullia, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • M.T.F. Pivi
    EBG MedAustron, Wr. Neustadt, Austria
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The design of smaller and less costly gantries for carbon ion particle therapy represents a major challenge to the diffusion of this treatment. Here we present the work done on the linear beam optics of possible gantry layouts, differing for geometry, momentum acceptance, and magnet technology, which share the use of combined function superconducting magnets with a bending field of 4T. We performed parallel-to-point and point-to-point optics matching at different magnification factors to provide two different beam sizes at the isocenter. Moreover, we considered the orbit distortion generated by magnet errors and we introduced beam position monitors and correctors. The study, together with considerations on the criteria for comparison, is the basis for the design of a novel and compact gantry for hadrontherapy.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS011  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS012 Explorative Studies of an Innovative Superconducting Gantry dipole, optics, superconducting-magnet, hadrontherapy 2966
 
  • M.G. Pullia, M. Donetti, E. Felcini, G. Frisella, A. Mereghetti, A. Mirandola, A. Pella, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • L. Dassa, M. Karppinen, D. Perini, D. Tommasini, M. Vretenar
    CERN, Meyrin, Switzerland
  • E. De Matteis, L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • C. Kurfürst, M.T.F. Pivi, M. Stock
    EBG MedAustron, Wr. Neustadt, Austria
  • S. Mariotto, M. Prioli
    INFN-Milano, Milano, Italy
  • L. Piacentini, A. Ratkus, T. Torims, J. Vilcans
    Riga Technical University, Riga, Latvia
  • L. Sabbatini, A. Vannozzi
    LNF-INFN, Frascati, Italy
  • S. Uberti
    Università di Brescia, Brescia, Italy
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The Heavy Ion Therapy Research Integration plus (HITRIplus) is a European project that aims to integrate and propel research and technologies related to cancer treatment with heavy ions beams. Among the ambitious goals of the project, a specific work package includes the design of a gantry for carbon ions, based on superconducting magnets. The first milestone to achieve is the choice of the fundamental gantry parameters, namely the beam optics layout, the superconducting magnet technology, and the main user requirements. Starting from a reference 3T design, the collaboration widely explored dozens of possible gantry configurations at 4T, aiming to find the best compromise in terms of footprint, capital cost, and required R&D. We present here a summary of these configurations, underlying the initial correlation between the beam optics, the mechanics, and the main superconducting dipoles design: the bending field (up to 4 T), combined function features (integrated quadrupole), magnet aperture (up to 90 mm), and angular length (30°-45°). The resulting main parameters are then listed, compared, and used to drive the choice of the best gantry layout to be developed in HITRIplus.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS012  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS020 Beam Optics Study for a Potential VHEE Beam Delivery System scattering, electron, optics, dipole 2992
 
  • C.S. Robertson, P. Burrows
    JAI, Oxford, United Kingdom
  • M. Dosanjh, A. Gerbershagen, A. Latina
    CERN, Meyrin, Switzerland
 
  VHEE (Very High Energy Electron) therapy can be superior to conventional radiotherapy for the treatment of deep seated tumours, whilst not necessarily requiring the space and cost of proton or heavy ion facilities. Developments in high gradient RF technology have allowed electrons to be accelerated to VHEE energies in a compact space, meaning that treatment could be possible with a shorter linac. A crucial component of VHEE treatment is the transfer of the beam from accelerator to patient. This is required to magnify the beam to cover the transverse extent of the tumour, whilst ensuring a uniform beam distribution. Two principle methodologies for the design of a compact transfer line are presented. The first of these is based upon a quadrupole lattice and optical magnification of beam size. A minimisation algorithm is used to enforce certain criteria on the beam distribution at the patient, defining the lattice through an automated routine. Separately, a dual scattering-foil based system is also presented, which uses similar algorithms for the optimisation of the foil geometry in order to achieve the desired beam shape at the patient location.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS020  
About • Received ※ 19 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS028 Performance Study of the NIMMS Superconducting Compact Synchrotron for Ion Therapy with Strongly Curved Magnets multipole, lattice, synchrotron, simulation 3014
 
  • H.X.Q. Norman, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • M. Karppinen
    CERN, Meyrin, Switzerland
  • H.L. Owen
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.L. Owen
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Delivery of heavy ion therapy currently utilises normal conducting synchrotrons. For the future generation of clini- cal facilities, the accelerator footprint must be reduced while adopting beam intensities above 1 × 1010 particles per spill for more efficient, effective treatment. The Next Ion Medical Machine Study (NIMMS) is investigating the feasibility of a compact (27 m circumference) superconducting synchrotron, based on 90° alternating-gradient, canted-cosine-theta mag- nets to meet these criteria. The understanding of the impact of the higher order multipole fields of these magnets on the beam dynamics of the ring is crucial for optimisation of the design and to assess its performance for treatment. We analyse the electromagnetic model of a curved superconducting magnet to extract its non-linear components. Preliminary as- sessment is performed using MADX/PTC. Further scope, involving cross-referencing with other particle tracking codes, is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS028  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)