Keyword: superconducting-magnet
Paper Title Other Keywords Page
MOPOTK039 Iron Yoke Effects in Quadrupole Magnets for High Rigidity Isotope Beams quadrupole, sextupole, dipole, simulation 546
 
  • D.B. Greene, Y. Choi, J. DeKamp, P.N. Ostroumov, M. Portillo, J.D. Wenstrom, T. Xu
    FRIB, East Lansing, Michigan, USA
  • S.L. Manikonda
    AML, Melbourne, Florida, USA
 
  Iron-dominated superconducting magnets are one of the most popular and most used design choices for superconducting magnetic quadrupoles for accelerator systems. While the iron yoke and pole tips are economic and effective in shaping the field, the large amount of iron also leads to certain drawbacks, namely, unwanted harmonics from the sextupole correctors nested inside of the quadrupole. Additional problems include the nonlinear field profile present in the high-field regime engendered by the presence of steel, and the mechanical and cryogenic design challenges of the entire iron yoke being part of the cold mass. The presented work discusses these effects and challenges by comparing an iron-dominated quadrupole model to an equivalent coil-dominated quadrupole model. The comparison of their respective magnetic harmonics, integrated strength, multipole effects, and mechanical challenges demonstrates that the coil-dominated design is a more favorable choice for select accelerator systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK039  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK019 Collider NICA Power Supply Magnet System collider, power-supply, controls, focusing 2806
 
  • V. Karpinsky, R.M. Ahmadrizyalov, S.A. Arefev, A.V. Butenko, A.V. Karavaev, S.V. Kirov, A.V. Kopchenov, A.A. Kozlykovskaya, T.A. Kulaeva, A.L. Osipenkov, A.V. Sergeev, A.A. Shurygin, E. Syresin, V.G. Tovstuha, N.V. Travin
    JINR, Dubna, Moscow Region, Russia
  • M.I. Kuznetsov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  A power supply system for Collider structural magnets is considered, which consists of precision current sources, energy evacuation devices for superconducting elements, additional sources, and control and monitoring equipment. The status of the equipment and the plan of its placement in Collider bld. 17 are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK019  
About • Received ※ 02 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS012 Explorative Studies of an Innovative Superconducting Gantry dipole, optics, quadrupole, hadrontherapy 2966
 
  • M.G. Pullia, M. Donetti, E. Felcini, G. Frisella, A. Mereghetti, A. Mirandola, A. Pella, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • L. Dassa, M. Karppinen, D. Perini, D. Tommasini, M. Vretenar
    CERN, Meyrin, Switzerland
  • E. De Matteis, L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • C. Kurfürst, M.T.F. Pivi, M. Stock
    EBG MedAustron, Wr. Neustadt, Austria
  • S. Mariotto, M. Prioli
    INFN-Milano, Milano, Italy
  • L. Piacentini, A. Ratkus, T. Torims, J. Vilcans
    Riga Technical University, Riga, Latvia
  • L. Sabbatini, A. Vannozzi
    LNF-INFN, Frascati, Italy
  • S. Uberti
    Università di Brescia, Brescia, Italy
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The Heavy Ion Therapy Research Integration plus (HITRIplus) is a European project that aims to integrate and propel research and technologies related to cancer treatment with heavy ions beams. Among the ambitious goals of the project, a specific work package includes the design of a gantry for carbon ions, based on superconducting magnets. The first milestone to achieve is the choice of the fundamental gantry parameters, namely the beam optics layout, the superconducting magnet technology, and the main user requirements. Starting from a reference 3T design, the collaboration widely explored dozens of possible gantry configurations at 4T, aiming to find the best compromise in terms of footprint, capital cost, and required R&D. We present here a summary of these configurations, underlying the initial correlation between the beam optics, the mechanics, and the main superconducting dipoles design: the bending field (up to 4 T), combined function features (integrated quadrupole), magnet aperture (up to 90 mm), and angular length (30°-45°). The resulting main parameters are then listed, compared, and used to drive the choice of the best gantry layout to be developed in HITRIplus.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS012  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)