Keyword: solenoid
Paper Title Other Keywords Page
MOPOPT062 Foil Focusing Effect in Pepper-Pot Measurements in Intense Electron Beams emittance, focusing, electron, experiment 404
 
  • S. Szustkowski, M.A. Jaworski, D.C. Moir
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy (Contract No. 89233218CNA000001).
Thin conducting foils, such as pepper-pot masks, perpendicular to an oncoming intense electron beam acts like an imperfect axisymmetric lens. The beamlets distribution from a pepper-pot mask varies based on if the mask hole radius is smaller or larger than the beams Debye length. Correcting for focusing effect is necessary for measuring transverse emittance with pepper-pot technique for intense electron beams. The Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Axis-I produces a 20 MeV, 2 kA, 80 ns FWHM electron beam for flash radiography. In this paper, we explore the effect of foil focusing due to various pepper-pot masks at DARHT Axis-I injector region from a 55 mm velvet cathode.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT062  
About • Received ※ 01 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK001 The Influence of Solenoid Field on Off-Axis Travelling Beam in AREAL Accelerator laser, alignment, simulation, experiment 422
 
  • H. Davtyan
    CANDLE, Yerevan, Armenia
  • G.A. Amatuni, A.A. Asoyan, A. Grigoryan, M.G. Yazichyan
    CANDLE SRI, Yerevan, Armenia
  • A. Grigoryan
    YSU, Yerevan, Armenia
 
  A wide range of experiments are being held at AREAL accelerator in the fields of materials science and life sci-ence by generating ultra-short 5 MeV electron beams. Beam parameter formation and stability preservation during the experiments are one of the key tasks of stable operation of the accelerator. Laser spot displacement on the photocathode could be one of the beam parameter distortion sources, which causes off-axis bunch travel also through the solenoid. The influences of laser spot horizontal displacement and the solenoid horizontal misalignment on the beam position at the experiment location are investigated separately via computer simulations. Using a laser spot mover and solenoid movers, an experiment has been carried out to compare simulation results with experiment.
*davtyan@asls.candle.am
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK001  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK026 Four-Dimensional Emittance Measurements and Correction of UED Optics up to Sextupole Order emittance, electron, quadrupole, sextupole 496
 
  • W.H. Li, M.B. Andorf, A.C. Bartnik, I.V. Bazarov, C.J.R. Duncan, M. Kaemingk, S.J. Levenson, J.M. Maxson, C.A. Pennington
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M.A. Gordon, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
 
  Funding: U.S Department of Energy, grant DE-SC0020144 U.S. National Science Foundation Grant PHY-1549132, the Center for Bright Beams
Ultrafast electron diffraction imposes stringent constraints on the full 6D brightness of the probe electron beam. The desired normalized emittance, often in the few-nanometer regime and below, renders the beam very sensitive to field aberrations and space charge effects. In this proceeding, we report the correction of normal quadrupole, skew quadrupole, and sextupole aberrations in the MEDUSA ultrafast electron micro-diffraction beamline and measurements of the subsequent emittance. This low emittance is enabled by alkali-antimonide photocathodes driven at the photoemission threshold. We demonstrate that the measured emittance is consistent with that of optimized simulations with these cathodes, indicating that low emittance beams from high quality photocathodes can be preserved and used in practical applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK026  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK033 Beamline Design and Optimisation for High Intensity Muon Beams at PSI target, experiment, proton, dipole 523
 
  • E.V. Valetov
    PSI, Villigen PSI, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 884104 (PSI-FELLOW-III-3i).
The High Intensity Muon Beams (HIMB) project at the Paul Scherrer Institute (PSI) will provide muon intensities of the order of 1e10 muons/s for particle physics and material science experiments, two orders of magnitude higher than the state of the art, which is currently available also at PSI. In particle transport simulations for the HIMB, we use G4beamline with measured pi+ cross-sections and with variance reduction. We also use the codes COSY INFINITY, TRANSPORT, and TURTLE for some studies. We perform asynchronous Bayesian optimisation of the beamlines on a computing cluster using G4beamline and the optimisation package DeepHyper. We performed numerous studies for the design of the HIMB, and we produced various results, including the muon transmission, beam phase space, polarisation, and momentum spectrum.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK033  
About • Received ※ 16 May 2022 — Revised ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS019 The New SPARC_LAB RF Photo-Injector gun, operation, vacuum, quadrupole 671
 
  • D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F. Cardelli, G. Costa, M. Del Franco, G. Di Pirro, L. Faillace, M. Ferrario, G. Franzini, A. Gallo, A. Giribono, L. Piersanti, L. Sabbatini, A. Stella, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • A. Battisti, E. Chiadroni, G. Di Raddo, A. Liedl, V.L. Lollo, L. Pellegrino, R. Pompili, S. Romeo, V. Shpakov, C. Vaccarezza, F. Villa
    LNF-INFN, Frascati, Italy
  • M. Carillo, E. Chiadroni
    Sapienza University of Rome, Rome, Italy
  • A. Cianchi, M. Galletti
    Università di Roma II Tor Vergata, Roma, Italy
 
  A new RF photo-injector has been designed, realized and successfully installed at the SPARC_LAB facility (INFN-LNF, Frascati, Rome). It is based on a 1.6 cell RF gun fabricated with the new brazing free technology recently developed at the National Laboratories of Frascati. The electromagnetic design has been optimized to have a full compensation of the dipole and quadrupole field components introduced by the coupling hole with an improvement of the effective pumping speed with two added pumping ports. The gun is overcoupled (\beta=2) to reduce the filling time and to allow the operation with short RF pulses. The overall injector integrates a new solenoid with a remote control of the transverse position and a variable skew quadrupole for the compensation of residual quadrupole field components. It also allows an on axis laser injection system with the last mirror in air, and the possibility of a future integration of an X/C band cavity linearizer. In the paper we report the main characteristics of the electromagnetic and mechanical design and the low and high power test results that shows the extremely good perfomances of the new device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS019  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS020 Dark Current Studies for a High Gradient SW C-Band RF Gun gun, cathode, simulation, electron 675
 
  • F. Cardelli, D. Alesini, L. Faillace, A. Giribono, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • G. Di Raddo
    LNF-INFN, Frascati, Italy
  • T.G. Lucas
    PSI, Villigen PSI, Switzerland
 
  It is now well-established that for the generation of very high brightness beams, required for fourth generation light sources, it is highly advantageous to use injectors based on Radiofrequency photo-guns with very high peak electric fields on the cathode (>120 MV/m). This very high surface electric field leads to the generation of undesirable electrons due to the field emission effect. The emitted electrons can be captured and propagate along the Linac forming a dark current beam, leading to background radiation that can damage the instrumentation and radioactivate components. Consequently, it is important that the emission of these electrons, and their subsequent transportation, is carefully evaluated. Recently, in the framework of the I-FAST project, a high gradient, standing wave, C-band (5712 MHz) RF photogun has been designed and will be realized soon. In this paper, the results of dark current studies and simulations are illustrated. The transport efficiency and the spectrum of the dark current have been evaluated by Particle-In-Cell simulations for different cathode peak field values considering also the effect of the focusing solenoid on the dark current beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS020  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOXGD3 6D Phase Space Diagnostics Based on Adaptively Tuned Physics-Informed Generative Convolutional Neural Networks controls, feedback, network, diagnostics 776
 
  • A. Scheinker
    LANL, Los Alamos, New Mexico, USA
  • F.W. Cropp V
    UCLA, Los Angeles, USA
  • D. Filippetto
    LBNL, Berkeley, California, USA
 
  Funding: US Department of Energy, DOE Office of Science Graduate Student Research (SCGSR) contract numbers 89233218CNA000001 and DE-AC02-05CH11231 and by the NSF under Grant No. PHY-1549132.
A physics-informed generative convolutional neural network (CNN)-based 6D phase space diagnostic is presented which generates all 15 unique 2D projections (x,y), (x,y’),…, (z,E) of a charged particle beam’s 6D phase space (x,y,z,x’,y’,E)*. The CNN is trained by supervised learning over a wide range of input beam distributions, accelerator parameters, and the associated 6D beam phase spaces at multiple accelerator locations. The CNN is applied in an un-supervised adaptive manner without knowledge of the input beam distribution or accelerator parameters and is robust to their unknown time variation. Adaptive feedback automatically tunes the low-dimensional latent space of the encoder-decoder CNN to predict the 6D phase space based only on 2D (z,E) longitudinal phase space measurements from a device such as a transverse deflecting RF cavity (TCAV). This method has the potential to provide diagnostics beyond the existing state of the art at many accelerator facilities. Studies are presented for two very different accelerators: the 5-meter-long ultra-fast electron diffraction (UED) HiRES compact accelerator at LBNL and the kilometer long plasma wakefield accelerator FACET-II at SLAC.
*A. Scheinker. "Adaptive machine learning for time-varying systems: low dimensional latent space tuning." Journal of Instrumentation 16.10, 2021: P10008. https://doi.org/10.1088/1748-0221/16/10/P10008
 
slides icon Slides TUOXGD3 [3.112 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXGD3  
About • Received ※ 21 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIZSP2 The Muon Collider collider, target, cavity, emittance 821
 
  • D. Schulte
    CERN, Meyrin, Switzerland
 
  Muon colliders are considered nowadays in the landscape of future lepton colliders. Since the MAP project in USA, an important effort is being made in Europe to identify the neccesary R&D to advance towards a Conceptual Design Report in the next years. The talk will review the status of the technologies and accelerator designs and will present the R&D plans.  
slides icon Slides TUIZSP2 [15.641 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIZSP2  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT011 Modelling FCC-ee Using MADX lattice, emittance, radiation, quadrupole 1854
 
  • L. van Riesen-Haupt, H. Burkhardt, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
 
  We present the latest developments for simulating FCC-ee using CERN’s MADX software. Along with updated benchmark studies, we describe how the latest MADX updates can facilitate the simulation of FCC-ee design features, including improvements in tapering and different options for implementing a tilted solenoid.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT011  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT042 Designing the EIC Electron Storage Ring Lattice for a Wide Energy Range electron, dipole, lattice, quadrupole 1946
 
  • D. Marx, J.S. Berg, J.S. Berg, J. Kewisch, Y. Li, Y. Li, C. Montag, V. Ptitsyn, V. Ptitsyn, S. Tepikian, F.J. Willeke, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • B.R. Gamage, V.S. Morozov, V.S. Morozov
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter, G.H. Hoffstaetter, D. Sagan, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-SC0012704, by Jefferson Science Associates, LLC, under Contract No. DE-AC05-06OR23177, by UT-Battelle, LLC, under contract DE-AC05-00OR22725, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) will collide electrons with hadrons at center-of-mass energies up to 140 GeV (in the case of electron-proton collisions). A 3.8-kilometer electron storage ring is being designed, which will store electrons with a range of energies up to 18 GeV for collisions at one or two interaction points. At energies up to 10 GeV the arcs will be tuned to provide 60 degree phase advance per cell in both planes, whereas at top energy of 18 GeV a 90 degree phase advance per cell will be used, which largely compensates for the horizontal emittance increase with energy. The optics must be matched at three separate energies, and the different phase-advance requirements in both the arc cells and the straight sections make this challenging. Moreover, the spin rotators must fulfill requirements for polarization and spin matching at widely different energies while satisfying technical constraints. In this paper these challenges and proposed solutions are presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT042  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT050 Detector Solenoid Compensation in the EIC Electron Storage Ring cavity, detector, simulation, collider 1972
 
  • D. Xu
    BNL, Upton, New York, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  The Electron Ion Collider (EIC) uses crab cavities to restore the geometrical luminosity loss. Due to the space limitation, the detector solenoid cannot be compensated locally. This paper presents the lattice design to compensate the detector solenoid without interfering the crab cavities. The skew quadrupoles are employed to avoid additional crab cavities. The correction scheme is checked by beam-beam simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT050  
About • Received ※ 19 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT053 Characterisation of Cooling in the Muon Ionization Cooling Experiment emittance, collider, experiment, proton 1976
 
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • M.A. Cummings
    Muons, Inc, Illinois, USA
 
  A high-energy muon collider could be the most powerful and cost-effective collider approach in the multi-TeV regime, and a neutrino source based on decay of an intense muon beam would be ideal for measurement of neutrino oscillation parameters. Muon beams may be created through the decay of pions produced in the interaction of a proton beam with a target. The muons are subsequently accelerated and injected into a storage ring where they decay producing a beam of neutrinos, or collide with counter-rotating antimuons. Cooling of the muon beam would enable more muons to be accelerated resulting in a more intense neutrino source and higher collider luminosity. Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. Here the observation of ionization cooling is described. The results of the further analysis of the data is presented, including studies in different magnet configurations and with more detailed understanding of the detector systematic uncertainty.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT053  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT062 Optimisation of the FCC-ee Positron Source Using a HTS Solenoid Matching Device positron, target, linac, simulation 2003
 
  • Y. Zhao, S. Döbert, A. Latina, S. Ogur
    CERN, Meyrin, Switzerland
  • B. Auchmann, P. Craievich, J. Kosse, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • I. Chaikovska, R. Chehab
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • M. Duda
    IFJ-PAN, Kraków, Poland
  • P.V. Martyshkin
    BINP SB RAS, Novosibirsk, Russia
 
  In this paper, we present the simulation and optimisation of the FCC-ee positron source, where a high-temperature superconducting (HTS) solenoid is used as the matching device to collect positrons from the target. The "conventional" target scheme is used which simply consists of amorphous tungsten. The target is placed inside the bore of the HTS solenoid to improve the accepted positron yield at the entrance of the damping ring and the location of the target is optimised. The latest recommended baseline beam parameters are used and presented. An optimisation of the ideal positron yield using the analytic SC solenoid on-axis field is also performed and shows that the design of the HTS solenoid is optimal as far as the accepted positron yield is concerned.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT062  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT065 Simulations of the Upgraded Drive-Beam Photoinjector at the Argonne Wakefield Accelerator emittance, laser, gun, electron 2015
 
  • E.A. Frame, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S.Y. Kim, X. Lu, J.G. Power, D.S. Scott, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: Department of Energy
The Argonne Wakefield Accelerator (AWA) is planning to upgrade its photoinjector for the drive-beam accelerator. The main goal of the upgrade is to improve the beam brightness using a symmetrized RF-gun cavity. In the process, the photoinjector was reconfigured and some of the solenoid magnets redesigned. A challenging aspect of this optimization is that the injector should be able to produce bright low-charge (~1 nC) bunches while also being capable of operating at high-charge (~50 nC) bunches. This paper will discuss the optimization of the beam dynamics for the low- and high-charge cases and explore the performances of the proposed configuration using a model of the full AWA drive-beam beamline including 3D field maps for the external electromagnetic fields. The optimizations are performed with ASTRA and the DEAP toolbox and with OPAL.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT065  
About • Received ※ 08 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK003 Status of the Development of the Electron Lens for Space Charge Compensation at GSI electron, gun, cathode, space-charge 2027
 
  • K. Schulte-Urlichs, D. Ondreka, P.J. Spiller, K.I. Thoma
    GSI, Darmstadt, Germany
  • M. Droba, T. Dönges, O. Meusel, H. Podlech
    IAP, Frankfurt am Main, Germany
 
  At GSI a prototype electron lens for space charge (SC) compensation is currently being designed and main components as the RF-modulated electron gun are already under commissioning. The goal of this project is the (partial) compensation of SC forces within the ion beam by an overlapping electron beam. This may help to increase the intensity of primary beams, especially in the FAIR facility and potentially all large synchrotrons operated at the SC limit. For an effective SC compensation, the generated electron beam needs to follow the transverse and longitudinal beam profile of the ion bunch structure. The requirements are maximum currents of 10 A and grid modulation to cover a broad frequency range from 400 kHz to 1 MHz. The RF-modulated electron gun was designed and manufactured in the scope of the ARIES collaboration and is currently being tested at the E-Lens Lab of Goethe University Frankfurt. A dedicated test bench was built for commissioning of the major e-lens components and diagnostics. In this contribution the overall set-up will be presented putting special emphasis on the beam dynamics and collector design as well as as well as simulation results of the electron gun.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK003  
About • Received ※ 18 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK019 Status of the Laser Ion Source Upgrade (LION2) at BNL target, laser, extraction, plasma 2087
 
  • T. Kanesue, B.D. Coe, S. Ikeda, S.A. Kondrashev, C.J. Liaw, M. Okamura, R.H. Olsen, T. Rodowicz, R. Schoepfer, L. Smart, D. Weiss, Y. Zhang
    BNL, Upton, New York, USA
  • A. Cannavò
    NPI, Řež near Prague, Czech Republic
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, and by the National Aeronautics and Space Administration.
A laser ion source (LION) at Brookhaven National Labor-atory (BNL) has been operational since 2014 to provide low charge state heavy ions of various species for Rela-tivistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Pulsed ion beams (100~300 µs) with beam current ranging from 100 µA to 1 mA from any solid-state targets can be supplied without memory effect of previous beams at pulse-by-pulse basis. LION is an essential device for the operation of a galactic cosmic ray simulator at NSRL together with high-performance beams for RHIC. Because the importance of LION has been widely recognized, an upgraded version of LION, which is called LION2, is being developed for improved performance and reliability. The design and status of the LION2 will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK019  
About • Received ※ 15 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK020 Slanted Beam Extraction on Laser Ion Source laser, extraction, plasma, ion-source 2090
 
  • M. Okamura, S. Ikeda, T. Kanesue, S.A. Kondrashev
    BNL, Upton, New York, USA
  • A. Cannavò
    NPI, Řež near Prague, Czech Republic
 
  Funding: US DOE, Office of Science, under contract DE-SC0012704.
Laser ion sources generate plasma and supply ions by focusing energy by light onto a solid surface. The ionization is achieved during the pulsed laser irradiation period. Then the plasma expands vertically from the target surface as it moves forward. Usually, this drift distance is chosen from tens of centimeters to several meters. Once the required pulse width and plasma density are met, an extraction electric field is applied. In most cases, this electric field is set in the same direction as the direction of the plasma. In this study, we experimentally verify how performance is achieved when the direction of the extraction field is at an angle to the direction of motion of the plasma. If the extraction field can be slanted without degradation of the ion source performance, it is considered to be able to shield neutral vapors and debris generated simultaneously with the plasma, which will be advantageous for the long-term operation of the laser ion source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK020  
About • Received ※ 09 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK054 Experimental Verification of DARHT Axis 1 Injector PIC Simulations simulation, cathode, emittance, experiment 2183
 
  • A.F. Press, M.A. Jaworski, D.C. Moir, S. Szustkowski
    LANL, Los Alamos, New Mexico, USA
 
  Validated particle in cell (PIC) simulations of the DARHT Axis 1 injector have the potential to reduce accelerator downtime, assist experimental data analysis and improve accelerator tunes. To realize these benefits, the simulations must be validated with experimental results. In this work, the particle in cell code Chicago is used to simulate the injector region of the dual-axis radiographic hydrodynamic test facility (DARHT) first axis. These simulations are validated against experiment using measured anode-cathode voltage, beam current at three positions, optical transition radiation and previously calculated emittance. Since all of these measurements contain some variation, the respective simulation parameters are varied to understand their effect. The resulting simulated beam current distributions can then be compared to the measured 2RMS radius. This resulted in a reasonably well validated simulation model. Some inconstancy between simulated and measured results still exists, which future work will address.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK054  
About • Received ※ 06 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS025 Injector Design Towards ERL-Based EUV-FEL for Lithography emittance, cavity, electron, FEL 2299
 
  • O.A. Tanaka, T. Miyajima, N. Nakamura, T. Tanikawa
    KEK, Ibaraki, Japan
 
  A high-power EUV light source using ERL-based FEL can supply multiple semiconductor exposure de-vices. There are some requirements in the whole and its injector, in particular, and their examination and necessary development are being carried out. The requirement for the injector was to generate high bunch charge beams at a high-repetition rate. In this regard, a space charge effect should be treated carefully in the design of the injector. For FEL operation, not only short bunch length and small transverse emittance but also small longitudinal emittance are required. By using a multi-objective genetic algorithm, we are minimizing them at the exit of the injector to investigate the injector performance and its effect on the FEL generation. In this study, we describe the injector optimization strategies and possible options suited for the ERL-based EUV-FEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS025  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS047 Automated Design and Optimization of the Final Cooling for a Muon Collider emittance, simulation, collider, optics 2358
 
  • E. Fol, D. Schulte, B. Stechauner
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Schieck
    HEPHY, Wien, Austria
 
  The desired beam emittance for a Muon collider is several orders of magnitude less than the one of the muon beams produced at the front-end target. Ionization cooling has been demonstrated as a suitable technique for the reduction of the muon beam emittance. Final cooling, as one of the most critical stages of the muon collider complex, necessitates careful design and optimization in order to control the beam dynamics and ensure efficient emittance reduction. We present an optimization framework based on ICool simulation code and application of different optimization algorithms, to automatize the choice of optimal initial muon beam parameters and simultaneous tuning of numerous final cooling components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS047  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS057 Simulation Studies and Machine Learning Applications at the Coherent electron Cooling experiment at RHIC LEBT, electron, emittance, quadrupole 2387
 
  • W. Lin, J.A. Crittenden, G.H. Hoffstaetter, M.A. Sampson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Y.C. Jing
    BNL, Upton, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Funding: Work supported by the U.S. National Science Foundation under Award PHY-1549132, and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Coherent electron cooling is a novel cooling technique which cools high-energy hadron beams rapidly by amplifying the modulation induced by hadrons in electron bunches. The Coherent electron cooling (CeC) experiment at Brookhaven National Laboratory (BNL) is a proof-of-principle test facility to demonstrate this technique. To achieve efficient cooling performance, electron beams generated in the CeC need to meet strict quality standards. In this work, we first present sensitivity studies of the low energy beam transport (LEBT) section, in preparation for building a surrogate model of the LEBT line in the future. We also present preliminary test results of a machine learning (ML) algorithm developed to improve the efficiency of slice-emittance measurements in the CeC diagnostic line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS057  
About • Received ※ 06 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST008 Status of the FLUTE RF System Upgrade linac, electron, GUI, storage-ring 2452
 
  • A. Malygin, O. Manzhura, A.-S. Müller, R. Ruprecht, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  FLUTE (Ferninfrarot Linac- Und Test-Experiment) is a compact versatile linac-based accelerator test facility at KIT. Its main goal is to serve as a platform for a variety of accelerator studies and to generate strong ultra-short THz pulses for photon science. It will also serve as an injector for a Very Large Acceptance compact Storage Ring (VLA-cSR), which will be realized at KIT in the framework of the compact STorage Ring for Accelerator Research and Technology (cSTART) project. To achieve acceleration of electrons in the RF photoinjector and LINAC (from FLUTE) with high stability, it is necessary to provide stable RF power. For this goal, an upgrade of the existing RF system design has been proposed and is currently being implemented. This contribution will report on the updated RF system design and the commissioning status of the new RF system components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST008  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT045 OPAL Simulations of the MESA Injection System simulation, electron, quadrupole, experiment 2697
 
  • S. Friederich
    IKP, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher, C.P. Stoll
    KPH, Mainz, Germany
 
  Funding: This work is supported by the DFG excellence initiative PRISMA+.
The MESA injection system will produce the spin-polarized electron beam for the upcoming accelerator MESA in Germany. The photoemission electron source (STEAM) will deliver 150 uA of spin-polarized electrons from GaAs-based photocathodes for the P2 experiment. Afterwards the low-energy beam transportation system (MELBA) can rotate the spin using two Wien filters and a solenoid for polarization measurements and to compensate for the spin precession in MESA. A chopper and buncher system prepares the phase space for the first acceleration in the normal-conducting pre-booster MAMBO. First OPAL simulation results of MELBA were presented at IPAC’21. Meanwhile these simulations have been extended by a 270-degree-bending alpha magnet as well as the electrostatic and magnetostatic fieldmaps of the Wien filters. Furthermore the fieldmaps of the 4 modules of the pre-accelerator MAMBO have been implemented. Hence, the complete MESA injection system could be simulated in OPAL and the results will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT045  
About • Received ※ 30 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROXSP3 First Operation of a Klystron Fitted with a Superconducting MgB2 Solenoid klystron, operation, vacuum, superconductivity 3138
 
  • N. Catalán Lasheras, M. Boronat, G. McMonagle, I. Syratchev
    CERN, Meyrin, Switzerland
  • A. Baig, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • T. Kimura, P.E. Kolda
    CPI, Palo Alto, California, USA
  • S. Michizono, A. Yamamoto
    KEK, Ibaraki, Japan
 
  As part of the effort to reduce the energy consumption of large research facilities using accelerators, high efficiency klystrons are being developed by CERN. However, a large fraction of the wall-plug power required to operate these klystrons is used in the focusing magnetic elements around the klystron in the form of normal conducting solenoids. In 2019, a prototype solenoid made of MgB2 was manufactured as a joint venture from CERN, Hitachi and KEK with the aim of reducing the power consumption by a factor ten using higher temperature superconductors. The characteristics of the magnet were measured upon manufacture and checked after the transport across the world. In 2020, the MgB2 magnet was integrated around one of the klystrons in the X-band facility at CERN and put into operation in the beginning of 2021. We present in this paper the final performance of the klystron when fitted with the new SC solenoid and compare it with the standard normal conducting solenoid system.  
slides icon Slides FROXSP3 [4.661 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FROXSP3  
About • Received ※ 11 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)