Keyword: plasma
Paper Title Other Keywords Page
MOPLXGD2 Progress Towards Demonstration of a Plasma-Based FEL FEL, laser, electron, wakefield 6
 
  • E. Chiadroni
    LNF-INFN, Frascati, Italy
 
  Plasma-based technology promises a revolution in the field of particle accelerators by pushing beams to gigaelectronvolt energies within centimeter distances. Several experiments are ongoing world-wide towards demonstration of a plasma based FEL enabling the realization of ultra-compact facilities for user applications like Free-Electron Lasers (FEL). The progress towards a plasma based FEL user facility is here reported, with particular focus on the recent results about the first experimental evidence of FEL lasing by a compact (3 cm) particle beam-driven plasma accelerator at the SPARC_LAB test facility. The status and prospects are discussed.  
slides icon Slides MOPLXGD2 [17.683 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPLXGD2  
About • Received ※ 12 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOOYGD2 The AWAKE Experiment in 2021: Performance and Preliminary Results on Electron-Seeding of Self-Modulation proton, electron, wakefield, experiment 21
 
  • E. Gschwendtner, L. Verra, G. Zevi Della Porta
    CERN, Meyrin, Switzerland
  • P. Muggli, L. Verra
    MPI, Muenchen, Germany
  • P. Muggli
    MPI-P, München, Germany
  • L. Verra
    TUM, Munich, Germany
 
  The future programme of the Advanced Wakefield (AWAKE) experiment at CERN relies on the seeded self-modulation of an entire proton bunch, resulting in phase-reproducible micro-bunches. This important milestone was achieved during the 2021 proton run by injecting a short electron bunch ahead of the proton bunch, demonstrating for the first time the electron-seeding of proton bunch self-modulation. This talk describes the programme, performance and preliminary results of the AWAKE experiment in the 2021 proton run, and introduces the program of the 2022 proton run. The observation of electron-seeded self-modulation opens new avenues of exploration which will be studied in 2022, including the effect of a phase difference between the front and the back of a proton bunch and the possibility of reproducibly seeding the hosing instability using the electron beam.  
slides icon Slides MOOYGD2 [7.040 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOYGD2  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT042 Recent AWAKE Diagnostics Development and Operational Results electron, proton, laser, experiment 343
 
  • E. Senes, S. Burger, M. Krupa, T. Lefèvre, S. Mazzoni, E. Poimenidou, A. Topaloudis, M. Wendt, G. Zevi Della Porta
    CERN, Meyrin, Switzerland
  • P. Burrows, C. Pakuza
    JAI, Oxford, United Kingdom
  • P. Burrows, C. Pakuza
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • D.A. Cooke
    UCL, London, United Kingdom
  • J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The Advanced Wakefield Experiment (AWAKE) at CERN investigates the Plasma-Wakefield acceleration of electrons driven by a relativistic proton bunch. After successfully demonstrating the acceleration process in the AWAKE Run 1, the experiment has now started the Run 2. The AWAKE Run 2 consists of several experimental periods that aim to demonstrate the feasibility of the AWAKE concept beyond the acceleration experiment, showing its feasibility as accelerator for particle physics application. As part of these developments, a dramatic effort in improving the AWAKE instrumentation is sustained. This contribution reports on the current developments of the instrumentation pool upgrade, including the digital camera system for transverse beam profile measurement, beam halo measurement and the spectrometer upgrade studies. The studies on the development of high-frequency beam position monitors are also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT042  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT053 A Beam Position Monitor for Electron Bunch Detection in the Presence of a More Intense Proton Bunch for the AWAKE Experiment electron, proton, radiation, experiment 381
 
  • C. Pakuza, P. Burrows
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • P. Burrows, C. Pakuza
    JAI, Oxford, United Kingdom
  • R. Corsini, W. Farabolini, P. Korysko, M. Krupa, T. Lefèvre, S. Mazzoni, E. Senes, M. Wendt
    CERN, Meyrin, Switzerland
 
  The Advanced Proton Driven Plasma Wakefield Experiment (AWAKE) at CERN uses 6 cm long proton bunches extracted from the Super Proton Synchrotron (SPS) at 400 GeV beam energy to drive high gradient plasma wakefields for the acceleration of electron bunches to 2 GeV within a 10 m length. Knowledge and control of the position of both copropagating beams is crucial for the operation of the experiment. Whilst the current electron beam position monitoring system at AWAKE can be used in the absence of the proton beam, the proton bunch signal dominates when both particle bunches are present simultaneously. A new technique based on the generation of Cherenkov diffraction radiation (ChDR) in a dielectric material placed in close proximity to the particle beam has been designed to exploit the large bunch length difference of the particle beams at AWAKE, 200 ps for protons versus a few ps for electrons, such that the electron signal dominates. Hence, this technique would allow for the position measurement of a short electron bunch in the presence of a more intense but longer proton bunch. The design considerations, numerical analysis and plans for tests at the CERN Linear Electron Accelerator for Research (CLEAR) facility are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT053  
About • Received ※ 20 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT066 Gas Sheet Diagnostics Using Particle in Cell Code electron, simulation, diagnostics, experiment 410
 
  • M. Yadav, P. Manwani, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • G. Andonian
    RadiaBeam, Santa Monica, California, USA
  • Ö. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • N.M. Cook, A. Diaw, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • N.P. Norvell
    UCSC, Santa Cruz, California, USA
 
  Funding: This work was supported by the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1 and DE-SC0019717.
When intense particle beam propagates in dense plasma or gas, ionization can yield valuable information on the drive beam properties. Impact ionization and tunnel ionization are the two ionization regimes that must be accounted for varying beam properties. Due to these ionization mechanisms, new plasma electrons are generated causing different instabilities, dependent on the dominant ionization process considered. In order to accomplish the ambitious experimental goals of sophisticated beam diagnostics using ionization imaging, careful studies on the different ionization regimes, and the cross-over periods, required. Here we will discuss the impact ionization using fully parallel PIC code OSIRIS. We focus on understanding the gas sheet ionization diagnostics for characterizing high intensity charged particle beams. We study the interaction of neutral gas with an electron beam and varying density. We will also investigate the principle of detecting photon emission, rather than direct primary ion imaging, from the ionization induced in the interaction between the gas jet and charged particle beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT066  
About • Received ※ 07 June 2022 — Revised ※ 19 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS016 Application of Nanostructures and Metamaterials in Accelerator Physics electron, acceleration, wakefield, laser 659
 
  • J. Resta-López
    ICMUV, Paterna, Spain
  • Ö. Apsimon, C. Bonțoiu, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • A. Bonatto
    Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
  • B. Galante
    CERN, Meyrin, Switzerland
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work is supported by the Generalitat Valenciana under Grant agreement No. CIDEGENT/2019/058.
Carbon-based nanostructures and metamaterials offer extraordinary mechanical and opto-electrical properties, which make them suitable for applications in diverse fields, including, for example, bioscience, energy technology and quantum computing. In the latest years, important R&D efforts have been made to investigate the potential use of graphene and carbon-nanotube (CNT) based structures to manipulate and accelerate particle beams. In the same way, the special interaction of graphene and CNTs with charged particles and electromagnetic radiation might open interesting possibilities for the design of compact coherent radiation sources, and novel beam diagnostics techniques as well. This paper gives an overview of novel concepts based on nanostructures and metamaterials with potential application in the field of accelerator physics. Several examples are shown and future prospects discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS016  
About • Received ※ 08 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS018 Tungsten Electron Emitter (TE²) with Direct Heated Cathode by Plasma Stream cathode, electron, gun, ion-source 667
 
  • K.I. Thoma, M. Droba, T. Dönges, O. Meusel, H. Podlech, K. Schulte-Urlichs
    IAP, Frankfurt am Main, Germany
  • K. Schulte-Urlichs, K.I. Thoma
    GSI, Darmstadt, Germany
 
  At Goethe-University, a novel concept of heating metallic cathodes is currently under investigation. In the scope of the ARIES collaboration WP16, an RF-modulated electron gun was developed and manufactured for application in electron lenses for space charge compensation. The goal of this project is to increase the intensity of primary beams, especially in low energy booster synchrotrons like the SIS18 and SIS100 at GSI/FAIR or the SPS at CERN. The gun was designed to produce electron currents of 10 A at extraction voltages of 30 kV. The tungsten electron emitter (TE²) and the grid electrode were designed and manufactured to be integrated in the extractor of the original volume type ion source. Significant effort was put into a robust and flexible design with highly reliable key components. The cathode is heated by a plasma stream generated in the plasma chamber of the source. Different heating options of the cathode are currently being studied. This contribution presents the working principles of the electron gun and first measurements results of cathode heating.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS018  
About • Received ※ 18 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST051 Using Data Intensive Science for Accelerator Optimization experiment, simulation, electron, radiation 980
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work was supported by STFC under grant agreement ST/P006752/1.
Particle accelerators and light sources are some of the largest, most data intensive, and most complex scientific systems. The connections and relations between machine subsystems are complicated and often nonlinear with system dynamics involving large parameter spaces that evolve over multiple relevant time scales and accelerator systems. In 2017, the Liverpool Centre for Doctoral Training in Data Intensive Science (LIV. DAT) was established. With almost 40 PhD students, the centre is now established as an international hub for training PhD students in data intensive science. This contribution presents results from studies carried out in LIV. DAT into novel high gradient accelerators with a focus on the data science techniques that were used. This includes studies into inverse-designed narrowband THz radiators for ultra-relativistic electrons, simulation of the transverse asymmetry and inhomogeneity on seeded self-modulation of beams in plasma, as well as studies into the physical aspects of collinear laser injection in Trojan Horse laser plasma experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST051  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT024 Recent Developments at SOLARIS National Synchrotron Radiation Centre synchrotron, radiation, vacuum, operation 1051
 
  • A.I. Wawrzyniak, P. Andryszczak, G. Cios, K. Gula, G.W. Kowalski, A.M. Marendziak, A. Maximenko, R. Panaś, T. Sobol, M. Szczepaniak, J.J. Wiechecki, M. Wiśniowski, M. Zając
    NSRC SOLARIS, Kraków, Poland
  • A. Curcio
    CLPU, Villamayor, Spain
  • H. Lichtenberg
    Hochschule Niederrhein University of Applied Sciences, Krefeld, Germany
 
  SOLARIS National Synchrotron Radiation Centre is under constant development of the research infrastructure. In 2018 first users were welcomed at three different experimental stations. Up to now 5 end stations are available at SOLARIS for experiments at 4 beamlines, and 4 new beamlines are under construction. In 2021 new front end for POLYX beamline was installed and de-gassed. Moreover, ASTRA beamline components were installed and first commissioning stage has stared. Additionally, a plasma cleaning station has been designed, built and is currently tested. Apart of the beamlines, up-grades to the linac and storage ring operation have been done. During the COVID-19 pandemic the software for remote injection process was developed and is used on daily basis. The transverse beam emittance measurement on the visible light beamline LUMOS was implemented and gives results that are complementary to the Pinhole beamline. Within this presentation the overview of the recent developments with insight to the details to be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT024  
About • Received ※ 09 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT034 Modelling of X-Ray Volume Excitation of the XLO Gain Medium Using Flash laser, simulation, electron, target 1081
 
  • P. Manwani, N. Majernik, B. Naranjo, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • E.C. Galtier, A. Halavanau, C. Pellegrini
    SLAC, Menlo Park, California, USA
 
  Funding: This work was performed with the support of the US Department of Energy under Contract No. DE-AC02-76SF00515 and DESC0009914.
Plasma dynamics and crater formation of laser excited volumes in solids is a complex process due to thermalization, shockwave formation, varying absorption mechanisms, and a wide range of relevant physics timescales. The properties and interaction of such laser-matter systems can be modeled using an equation of state and opacity based multi-temperature treatment of plasma using a radiation hydrodynamics code. Here, we use FLASH, an adaptive mesh radiation-hydrodynamics code, to simulate the plasma expansion following after the initial energy deposition and thermalization of the column, to benchmark the results of experiments undertaken at UCLA on optical laser ablation. These computational results help develop a quantitative understanding of the material excitation process and enable the optimization of the gain medium delivery system for the x-ray laser oscillator project *.
* Halavanau, Aliaksei, et al. "Population Inversion X-Ray Laser Oscillator." Proceedings of the National Academy of Sciences, vol. 117, no. 27, 2020, pp. 15511-15516.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT034  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK013 PEALD SIS Studies for SRF Cavities cavity, SRF, site, niobium 1222
 
  • I. González Díaz-Palacio, R.H. Blick, A. Stierle, R. Zierold
    University of Hamburg, Hamburg, Germany
  • W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • A. Jeromin
    DESY Nanolab, FS-NL, Hamburg, Germany
  • T.F. Keller, N. Krupka, M. Wenskat
    DESY, Hamburg, Germany
 
  Recent technological advances and material treatments have pushed Nb SRF cavities to their maximum RF performance. A novel approach for overcoming this limitation, which takes advantage of RF field only penetrates into the superconductor at a certain distance called London penetration depth, is nano-structuring multilayers with PEALD (plasma-enhanced atomic layer deposition). SIS (superconductor-insulator-superconductor) multilayers provide magnetic screening of the bulk Nb cavity, increasing the field at which the vortex penetration starts, and higher quality factor. ALD is closely related to chemical vapor deposition and bases on sequential self-limit gas-solid surface reactions facilitating conformal coatings with sub-nm precision even on complex substrates such as the interior of a cavity. As a preliminary study for SIS SRF cavities, we investigated the AlN-NbTiN/NbN multilayers grown by PEALD. Different compositions, thicknesses, and post-deposition thermal treatments have been investigated. The characterization results of superconducting properties, elemental composition, crystallinity, and cross-section are shown in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK013  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIXSP1 Towards High-Repetition Rate Petawatt Laser Experiments with Cryogenic Jets Using a Mechanical Chopper System laser, target, proton, experiment 1594
 
  • M. Rehwald, S. Assenbaum, C. Bernert, U. Schramm, K. Zeil
    HZDR, Dresden, Germany
  • C.B. Curry, M. Gauthier, S.H. Glenzer, C. Schoenwaelder, F. Treffert
    SLAC, Menlo Park, California, USA
  • S. Göde
    EuXFEL, Schenefeld, Germany
 
  Laser-plasma based ion accelerators require suitable high-repetition rate target systems that enable systematic studies at controlled plasma conditions and application-relevant particle flux. Self-refreshing, micrometer-sized cryogenic jets have proven to be an ideal target platform. Yet, operation of such systems in the harsh environmental conditions of high power laser induced plasma experiments have turned out to be challenging. Here we report on recent experiments deploying a cryogenic hydrogen jet as a source of pure proton beams generated with the PW-class ultrashort pulse laser DRACO. Damage to the jet target system during application of full energy laser shots was prevented by implementation of a mechanical chopper system interrupting the direct line of sight between the laser plasma interaction zone and the jet source.  
slides icon Slides WEIXSP1 [4.896 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIXSP1  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOZGD1 Design of an LPA-Based First-Stage Injector for a Synchrotron Light Source electron, laser, beam-loading, simulation 1639
 
  • X.Y. Shi, H.S. Xu
    IHEP, Beijing, People’s Republic of China
 
  Study of plasma-based acceleration has been a frontier of accelerator community for decades. The beam performance obtained from a laser-plasma based accelerator (LPA) becomes higher and higher. Nowadays, a combination of LPAs and the conventional RF accelerators is a trend. One of the interesting directions to go is to replace a LINAC by an LPA as the first-stage injector of a synchrotron light source. In this paper, we present a physical design of a 500 MeV LPA-based first-stage injector for a synchrotron light source.  
slides icon Slides WEOZGD1 [8.971 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOZGD1  
About • Received ※ 15 June 2022 — Revised ※ 22 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST009 Muon Collider Based on Gamma Factory, FCC-ee and Plasma Target positron, electron, emittance, target 1691
 
  • F. Zimmermann, A. Latina
    CERN, Meyrin, Switzerland
  • M. Antonelli, M. Boscolo
    LNF-INFN, Frascati, Italy
  • A.P. Blondel
    DPNC, Genève, Switzerland
  • J.P. Farmer
    MPI-P, München, Germany
 
  Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730 (iFAST).
The LEMMA-type muon collider generates muon pairs by the annihilation of 45 GeV positrons with electrons at rest. Due to the small cross section, an extremely high rate of positrons is required, which could be achieved by a ’Gamma factory’ based on the LHC. Other challenges with the LEMMA-type muon production scheme include the emittance preservation of muons and muon-generating positrons upon multiple traversals through a target, and the merging of many separate muon bunchlets. These two challenges may potentially be overcome by (1) operating the FCC-ee booster with a barrier bucket and induction acceleration, so that all positrons of a production cycle are merged into one single superbunch instead of storing ~10,000 separate bunches; and (2) sending the positron superbunch into a plasma target. During the passage of the positron superbunch, the electron density is enhanced 100–1000 fold without any increase in the density of nuclei, so that beamstrahlung and Coulomb scattering are essentially absent. We investigate prospects and difficulties of this approach, including emittance growth due to filamentation in the nonlinear plasma channel and due to positron self-modulation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST009  
About • Received ※ 08 June 2022 — Revised ※ 23 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST029 First Start-to-End Simulations of the 6 GeV Laser-Plasma Injector at DESY laser, emittance, injection, electron 1757
 
  • S.A. Antipov, I.V. Agapov, R. Brinkmann, A. Ferran Pousa, M.A. Jebramcik, A. Martinez de la Ossa, M. Thévenet
    DESY, Hamburg, Germany
 
  DESY is studying the feasibility of a 6 GeV laser-plasma injector for top-up operation of its future flagship synchrotron light source PETRA IV. A potential design of such an injector involves a single plasma stage, a beamline for beam capture and phase space manipulation, and a X-band rf energy compressor. Numerical tracking with realistic beam distributions shows that an energy variation below 0.1%, rms and a transverse emittance about 1 nm-rad, rms can be achieved under realistic timing, energy, and pointing jitters. PETRA IV injection efficiency studies performed with a conservative 5% beta-beating indicate negligible beam losses for the simulated beams during top-up. Provided the necessary progress on high-power lasers and plasma cells, the laser plasma injector could become a competitive alternative to the conventional injector chain.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST029  
About • Received ※ 02 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST030 Multitask Optimization of Laser-Plasma Accelerators Using Simulation Codes with Different Fidelities simulation, laser, wakefield, acceleration 1761
 
  • Á. Ferran Pousa, M. Kirchen, A. Martinez de la Ossa, M. Thévenet
    DESY, Hamburg, Germany
  • S.T.P. Hudson, J.M. Larson
    ANL, Lemont, Illinois, USA
  • A. Huebl, R. Lehé, J.-L. Vay
    LBNL, Berkeley, USA
  • S. Jalas
    University of Hamburg, Hamburg, Germany
 
  When designing a laser-plasma acceleration experiment, one commonly explores the parameter space (plasma density, laser intensity, focal position, etc.) with simulations in order to find an optimal configuration that, for example, minimizes the energy spread or emittance of the accelerated beam. However, laser-plasma acceleration is typically modeled with full particle-in-cell (PIC) codes, which can be computationally expensive. Various reduced models can approximate beam behavior at a much lower computational cost. Although such models do not capture the full physics, they could still suggest promising sets of parameters to be simulated with a full PIC code and thereby speed up the overall design optimization. In this work we automate such a workflow with a Bayesian multitask algorithm, where each task has a different fidelity. This algorithm learns from past simulation results from both full PIC codes and reduced PIC codes and dynamically chooses the next parameters to be simulated. We illustrate this workflow with a proof-of-concept optimization using the Wake-T and FBPIC codes. The libEnsemble library is used to orchestrate this workflow on a modern GPU-accelerated high-performance computing system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST030  
About • Received ※ 08 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 14 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST032 Status Report of the 50 MeV LPA-Based Injector at ATHENA for a Compact Storage Ring laser, electron, storage-ring, target 1768
 
  • E. Panofski, C. Braun, J. Dirkwinkel, J.B. Gonzalez, T. Hülsenbusch, A.R. Maier, J. Osterhoff, G. Palmer, P.A. Walker, P. Winkler
    DESY, Hamburg, Germany
  • E. Bründermann, B. Härer, A.-S. Müller, A.I. Papash, C. Widmann
    KIT, Karlsruhe, Germany
  • T.F.J. Eichner, L. Hübner, S. Jalas, L. Jeppe, M. Kirchen, P. Messner, M. Schnepp, M. Trunk, C.M. Werle
    University of Hamburg, Hamburg, Germany
  • M. Kaluza, A. Sävert
    HIJ, Jena, Germany
 
  Laser-based plasma accelerators (LPA) have successfully demonstrated their capability to generate high-energy electron beams with intrinsically short bunch lengths and high peak currents at a setup with a small footprint. These properties make them attractive drivers for a broad range of different applications including injectors for rf-driven, ring-based light sources. In close collaboration the Deutsches Elektronen-Synchrotron (DESY), the Karlsruhe Institute of Technology (KIT) and the Helmholtz Institute Jena aim to develop a 50 MeV plasma injector and demonstrate the injection into a compact storage ring. This storage ring will be built within the project cSTART at KIT. As part of the ATHENA (Accelerator Technology HElmholtz iNfrAstructure) project, DESY will design, setup and operate a 50 MeV plasma injector prototype for this endeavor. This contribution gives a status update of the 50 MeV LPA-based injector and presents a first layout of the prototype design at DESY in Hamburg.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST032  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST035 Spectroscopic Measurements as Diagnostic Tool for Plasma-Filled Capillaries electron, acceleration, laser, GUI 1776
 
  • S. Arjmand, L. Crincoli, D. Pellegrini
    INFN/LNF, Frascati, Italy
  • M.P. Anania, A. Biagioni, G. Costa, M. Ferrario, M. Galletti, V.L. Lollo, R. Pompili
    LNF-INFN, Frascati, Italy
  • M. Del Franco
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • D. Giulietti
    UNIPI, Pisa, Italy
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The research concerns the study of the plasma sources for plasma-based accelerators (PBAs) at the SPARC_LAB test-facility (LNF-INFN). The interest in compact accelerators, overcoming the gigantism of the conventional radio-frequency (RF) accelerators, is growing in High Energy Physics. The plasma-based accelerating gradients can attain the GV/m scale. At the SPARC_LAB test-facility, a plasma device is under development. It consists of a capillary in which one or more inlets inject neutral gas (Hydrogen), ionized by a high-voltage (HV) discharge. Electron density has been measured as a function of time through the Stark broadening profiles of the Balmer line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST035  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST039 Mapping Charge Capture and Acceleration in a Plasma Wakefield of a Proton Bunch Using Variable Emittance Electron Beam Injection electron, experiment, wakefield, emittance 1780
 
  • E. Granados, A.-M. Bachmann, E. Chevallay, S. Döbert, V.N. Fedosseev, F. Friebel, S.J. Gessner, E. Gschwendtner, S.Y. Kim, S. Mazzoni, M. Turner, L. Verra
    CERN, Meyrin, Switzerland
  • A.-M. Bachmann, L. Verra
    MPI, Muenchen, Germany
  • S.Y. Kim
    UNIST, Ulsan, Republic of Korea
  • S.Y. Kim
    ANL, Lemont, Illinois, USA
  • J.T. Moody
    MPI-P, München, Germany
 
  In the Phase 2 of the AWAKE first experimental run (from May to November 2018), an electron beam was used to probe and test proton-driven wakefield accelera-tion in a rubidium plasma column. The witness electron bunches were produced using an RF-gun equipped with a Cs2Te photocathode illuminated by a tailorable ultrafast ultraviolet (UV) laser pulse. The construction of the UV beam optical system enabled appropriate transverse beam shaping and control of its pulse duration, size, and position on the photocathode, as well as time delay with respect to the ionizing laser pulse that seeds the plasma wakefields in the proton bunches. Variable photocathode illumination provided the required flexibility to produce electron bunches with variable charge, emittance, and injection trajectory into the plasma column. In this work, we analyze the overall charge capture and shot-to-shot reproducibility of the proton-driven plasma wakefield accelerator with various UV illumination and electron bunch injection parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST039  
About • Received ※ 23 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST041 Physical Aspects of Collinear Laser Injection at SLAC FACET-II E-310: Trojan Horse Experiment radiation, experiment, laser, electron 1787
 
  • M. Yadav, O. Apsimon, E. Kukstas, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.E. Hansel, P. Manwani, B. Naranjo, J.B. Rosenzweig
    UCLA, Los Angeles, USA
  • B. Hidding
    USTRAT/SUPA, Glasgow, United Kingdom
 
  Funding: This work was performed with support of the US Department of Energy, Division of High Energy Physics, un-der Contract No. DE-SC0009914, and the STFC grant ST/P006752/1.
The Facility for Advanced Accelerator Experimental Tests (FACET-II) is a test accelerator infrastructure at SLAC dedicated to the research and development of advanced accelerator technologies. We performed simulations of electron beam driven wakefields, with collinear lasers used for ionization injection of electrons. We numerically generated a witness beam using the OSIRIS code in an up ramp plasma as well as uniform plasma regimes. We report on challenges and details of the E-310 experiment which aims to demonstrate this plasma photocathode injection at FACET-II. We examine the phenomena beam hosing and drive beam depletion. Details of the witness beam generated are discussed. Computation of betatron-radiation X-ray spatial distribution and critical energy are done for FACET-II low emittance beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST041  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST042 Radiation Diagnostics for AWA and FACET-II Flat Beams in Plasma radiation, betatron, electron, emittance 1791
 
  • M. Yadav, O. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • H.S. Ancelin, G. Andonian, P. Manwani, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work was performed with support of the US Department of Energy, Division of High Energy Physics, under Contract No. DE-SC0009914, DE-SC0017648 - AWA and STFC grant ST/P006752/1 ,
In energy beam facilities like FACET and AWA, beams with highly asymmetric emittance are of interest because they are the preferred type of beam for linear colliders. That is ultimately the motivation: building a plasma based LC. In this case, the blowout region is no longer symmetric around an axis is not equal in the two transverse planes. Focusing is required to keep the particles within the tight apertures and characterizing these accelerators shows the benefits of employing ultra low beam emittances. Beams with high charge and high emittance ratios in excess of 100:1 are available at AWA. If the focusing will not be equal, then we will have different radiation signatures for the flat and symmetric beams in plasma. We use OSIRIS particle-in-cell codes to compare various scenarios including a weak blowout and a strong blowout. Further, we determine the radiation generated in the system by importing particle trajectories into a Liénard Weichert code. We discuss future steps towards full diagnostics of flat beams using radiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST042  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST043 An Effective-Density Model for Accelerating Fields in Laser-Graphene Interactions laser, target, electron, simulation 1795
 
  • C. Bonțoiu, O. Apsimon, E. Kukstas, C.P. Welsch, M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
  • A. Bonatto
    Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
  • J. Resta-López
    ICMUV, Paterna, Spain
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work was supported by STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT)
With the advancement of high-power UV laser technology, the use of nanostructures for particle acceleration attracts renewed interest due to its possibility of achieving TV/m accelerating gradients in solid state plasmas. Electron acceleration in ionized materials such as carbon nanotubes and graphene is currently considered as a potential alternative to the usual laser wakefield acceleration (LWFA) schemes. An evaluation of the suitability of a graphene target for LWFA can be carried out using an effective density model, thus replacing the need to model each layer. We present a 2D evaluation of the longitudinal electric field driven by a short UV laser pulse in a multi-layer graphene structure, showing that longitudinal fields of ~5 TV/m are achievable.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST043  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST045 Simulating Enhanced Focusing Effects of Ion Motion in Adiabatic Plasmas focusing, emittance, experiment, electron 1798
 
  • D.R. Chow, C.E. Hansel, P. Manwani, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, USA
  • Ö. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work was performed with support of the US Department of Energy, Division of High Energy Physics, under Contract No. DE-SC0009914, and the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1.
The FACET-II facility offers the unique opportunity to study low emittance, GeV beams and their interactions with high density plasmas in plasma wakefield acceleration (PWFA) scenarios. One of the experiments relevant to PWFA research at FACET-II is the ion collapse experiment E-314, which aims to study how ion motion in a PWFA can produce dual-focused equilibrium. As nonlinear focusing effects due to nonuniform ion distributions have not been extensively studied; we explore the difficulties of inducing ion motion in an adiabatic plasma and examines the effect an ion column has on beam focusing. A case study is performed on a system containing a plasma lens and adiabatic PWFA. Ions in the lens section are assumed to be static, while simulations of an adiabatic matching section are modified to include the effects of ion column collapse and their nonlinear focusing fields. Using the parameters of the FACET-II beam, we find that a collapsed ion column amplifies the focusing power of a plasma without compromising emittance preservation. This led to a spot size orders of magnitude less than that of a simply matched beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST045  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST046 Beam Matching in an Elliptical Plasma Blowout Driven by Highly Asymmetric Flat Beams emittance, simulation, wakefield, focusing 1802
 
  • P. Manwani, H.S. Ancelin, G. Andonian, N. Majernik, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
  • G. Andonian
    RadiaBeam, Marina del Rey, California, USA
  • G. Ha, J.G. Power
    ANL, Lemont, Illinois, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
  • M. Yadav
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was performed with the support of the US Department of Energy under Contract No. DE-SC0017648 and DESC0009914.
Particle beams with highly asymmetric emittance ratios, or flat beams, are employed at accelerator facilities such as the AWA and foreseen at FACET-II. Flat beams have been used to drive wakefields in dielectric structures and are an ideal candidate for high-gradient wakefields in plasmas. The high aspect ratio produces a blowout region that is elliptical in cross section and this asymmetry in the ion column structure creates asymmetric focusing in the two transverse planes. The ellipticity of the plasma blowout decreases as the normalized peak current increases, and gradually approaches an axisymmetric column. An appropriate matching condition for the beam envelope inside the elliptical blowout is introduced. Simulations are performed to investigate the ellipticity of the resultant wakefield based on the initial drive beam parameters, and are compared to analytical calculations. The parameter space for two cases at the AWA and FACET facilities, with requirements for plasma profile and achievable fields, is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST046  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST048 Excitation of Very High Gradient Plasma Wakefields From Nanometer Scale Beams wakefield, focusing, simulation, quadrupole 1806
 
  • P. Manwani, H.S. Ancelin, G. Andonian, D.R. Chow, N. Majernik, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
  • G. Andonian
    RadiaBeam, Marina del Rey, California, USA
  • R. Robles
    SLAC, Menlo Park, California, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
  • M. Yadav
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was performed with the support of the US Department of Energy under Contract No. DESC0009914.
The plasma based terawatt attosecond project at SLAC, termed PAX, offers near mega-Ampere beams that could be used to demonstrate plasma wakefield acceleration at very high gradients (TV/m). The beam has a large aspect ratio which allows it to be used at high densities since the longitudinal beam size is lower than the plasma skin depth. This beam can be focused using a permanent magnitude quadrupole (PMQ) triplet to further reduce its transverse size. Since the beam is extremely short compared to the plasma skin depth, it behaves like a delta-function perturbation to the plasma. This reduces the expected focusing effect of the ion column and simulations show that only the tail of the beam is notably focused and decelerated. This scenario is investigated with attendant experimental considerations discussed. The creation of the witness beam by the deceleration of the tail of the beam is also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST048  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST052 Influence of Plasma Electrode Aperture Size on Beam Emittance From a Multicusp Ion Source emittance, ion-source, extraction, experiment 1813
 
  • A.M. George, M.P. Dehnel, S.V. Melanson, J.J. Munich
    D-Pace, Nelson, British Columbia, Canada
  • N. Broderick
    University of Auckland, Auckland, New Zealand
 
  D-Pace’s TRIUMF-licensed multicusp filament ion source is capable of producing H beams up to 17.4 mA*. In most cases, the H beam is transported to the entrance of an accelerator or a magnet for further applications. The emittance of the beam extracted from the ion source should be maintained as low as possible to reduce the beam losses to the walls of the transport pipes. The beam emittance from the ion source can be controlled by changing the aperture diameter of the plasma electrode. The current study deals with the range of H beam emittance that can be achieved from D-Pace’s filament ion source, using different plasma electrode aperture sizes. The corresponding beam currents and the electron to ion ratios are also reported.
* Melanson, S., M. Dehnel, D. Potkins, H. McDonald, and C. Philpott. "H-, D-, C2-: a comparison of RF and filament powered volume-cusp ion sources." Ele 5 (2017): 10.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST052  
About • Received ※ 06 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT021 A Discharge Plasma Source Development Platform for Accelerators: The ADVANCE Lab at DESY diagnostics, laser, GUI, MMI 1886
 
  • J.M. Garland, R.T.P. D’Arcy, M. Dinter, S. Karstensen, S. Kottler, G. Loisch, K. Ludwig, J. Osterhoff, A. Rahali, A. Schleiermacher, S. Wesch
    DESY, Hamburg, Germany
 
  Novel plasma-based accelerators, as well as advanced, high-gradient beam-manipulation techniques’for example passive or active plasma lenses’require reliable and well-characterized plasma sources, each optimized for their individual task. A very efficient and proven way of producing plasmas for these applications is by directly discharging an electrical current through a confined gas volume. To host the development of such discharge-based plasma sources for advanced accelerators, the ATHENA Discharge deVelopment ANd Characterization Experiment (ADVANCE) laboratory has been established at DESY. In this contribution we introduce the laboratory, give a summary of available infrastructure and diagnostics, as well as a brief overview of current and planned scientific goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT021  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT046 Preparation of a Prototype Plasma Lens as an Optical Matching Device for the ILC e+ Source positron, simulation, focusing, optical-matching 1961
 
  • M. Formela, N. Hamann, G.A. Moortgat-Pick
    University of Hamburg, Hamburg, Germany
  • K. Flöttmann, G. Loisch, G.A. Moortgat-Pick
    DESY, Hamburg, Germany
 
  In recent years, high-gradient, symmetric focusing with active plasma lenses has regained significant interest due to the potential advantages in compactness and beam dynamics compared to conventional focusing elements. One potential application is the optical matching of highly divergent positrons from the undulator-based ILC positron source into the downstream accelerating structures. A collaboration between University Hamburg and DESY Hamburg has been established to develop a prototype design for this application. Here, we discuss beam dynamics simulation results, preliminary parameters of the lens prototype, and the current status of the prototype design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT046  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK002 Investigation, Simulation and First Measurements of a 2m Long Electron Column Trapped in a Gabor Lens Device electron, experiment, focusing, diagnostics 2023
 
  • K.I. Thoma, M. Droba, O. Meusel
    IAP, Frankfurt am Main, Germany
 
  Various Gabor-Lenses (GL) were investigated at Goethe University. Confinement of sufficient electron densities (ne~1E15m3) were reached without any external source of electrons. Focusing of ion beams by low energy was demonstrated, long term stability and reproducibility were approved. Main differences compared to experiments and investigations of the pure non-neutral in Penning-Malmberg traps are higher residual gas pressure and therefore higher collision rates, higher bulk temperatures, self-sustaining electron production process, much higher evaporation cooling rate. GL2000 is a new 2m long device and was mainly designed for focusing of ion beams in energy ranges up to GeV but also for investigation of non-neutral plasma parameters. The confined electron column is much longer compared to previous constructed Lenses. This makes ion and hadron beam focussing much more efficient, in addition new physical phenomena can be expected and investigated. Simulation results of steady- and thermal equilibrium states with various external parameters and first measurements will be presented. The first operational tests show that it is possible to confine a two-meter long electron column.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK002  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK016 Studies of ECR Plasmas and Materials Modification Using Low Energy Ion Beam Facility at IUAC ECR, electron, ion-source, cyclotron 2074
 
  • P. Tripathi, P. Kumar, S.K. Singh
    IUAC, New Delhi, India
 
  The ECR ion sources are widely used to produce high intensities of highly charged positive ions*. To increase their performance further, several techniques are employed. The addition of a lighter gas into the main plasma (so-called gas mixing) shows a substantial effect on the charge state distribution of highly charged ions. Although many theoretical models were used to explain this gas mixing effect, yet it is not fully understood. The low energy ion beam facility (LEIBF) at Inter-University Accelerator Centre (IUAC), New Delhi, India, which comprises a 10 GHz all-permanent magnet NANOGAN ECR source placed on a high voltage platform (400kV) has been used to develop several plasmas for the physical understanding of ions production and their confinement in a strong magnetic field**. Further, the LEIBF allows us to extract ion beams from the plasma in the energy range of a few keV to tens of MeV for novel ion-matter interaction experiments. In this paper, the charge state distribution studies (relevant to gas mixing effect) of various atomic species at optimized ion source tuning parameters along with some interesting results on materials synthesis/modification using ion beams is presented.
*A. G. Drentje, Review of Scientific Instruments 74, 2631 (2003)/ **P. Kumar et al., Pramana 59(5):805-809(2002)/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK016  
About • Received ※ 31 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK017 An Efficient H-/ D- Extraction in Neutral Beam Injection (NBI) Ion Sources extraction, simulation, electron, ion-source 2078
 
  • V. Variale
    INFN-Bari, Bari, Italy
  • M. Cavenago
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: INFN, DTT
The negative ion source development has reached performances very close to those required by the ITER project; see for example the test facility ELISE results*. A main residual problem seems to be the great amount of co-extracted electrons in the top part of the source. The introduction of a magnetic filter to remove the electrons from the extraction zone of the source causes ExB particle drifts (or shifts) which move both ions and electrons towards the top (or bottom depending on the B direction); in the top part the electron concentration and extracted current increase and that limits the extracted ion amount. In this contribution, as a possible solution, the application of a Planar Ion Funnel (PIF) extraction electric field configuration** on the source exit is proposed. The electric field line shape of PIF configuration, not only should break the perpendicularity between the magnetic filter B and the extraction electric field E in such a way to prevents the ExB particle drifts, but also should give a more efficient field shape for the H-/D- extraction. Preliminary simulations of D- and e- trajectories are presented to confirm the efficiency of the PIF system.
* B. Heinemann et al., Fusion Engineering and design (2021).
** A. Chaudhary et al., Rev. Sci. 85, 105101 (2014).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK017  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK019 Status of the Laser Ion Source Upgrade (LION2) at BNL solenoid, target, laser, extraction 2087
 
  • T. Kanesue, B.D. Coe, S. Ikeda, S.A. Kondrashev, C.J. Liaw, M. Okamura, R.H. Olsen, T. Rodowicz, R. Schoepfer, L. Smart, D. Weiss, Y. Zhang
    BNL, Upton, New York, USA
  • A. Cannavò
    NPI, Řež near Prague, Czech Republic
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, and by the National Aeronautics and Space Administration.
A laser ion source (LION) at Brookhaven National Labor-atory (BNL) has been operational since 2014 to provide low charge state heavy ions of various species for Rela-tivistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Pulsed ion beams (100~300 µs) with beam current ranging from 100 µA to 1 mA from any solid-state targets can be supplied without memory effect of previous beams at pulse-by-pulse basis. LION is an essential device for the operation of a galactic cosmic ray simulator at NSRL together with high-performance beams for RHIC. Because the importance of LION has been widely recognized, an upgraded version of LION, which is called LION2, is being developed for improved performance and reliability. The design and status of the LION2 will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK019  
About • Received ※ 15 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK020 Slanted Beam Extraction on Laser Ion Source laser, extraction, solenoid, ion-source 2090
 
  • M. Okamura, S. Ikeda, T. Kanesue, S.A. Kondrashev
    BNL, Upton, New York, USA
  • A. Cannavò
    NPI, Řež near Prague, Czech Republic
 
  Funding: US DOE, Office of Science, under contract DE-SC0012704.
Laser ion sources generate plasma and supply ions by focusing energy by light onto a solid surface. The ionization is achieved during the pulsed laser irradiation period. Then the plasma expands vertically from the target surface as it moves forward. Usually, this drift distance is chosen from tens of centimeters to several meters. Once the required pulse width and plasma density are met, an extraction electric field is applied. In most cases, this electric field is set in the same direction as the direction of the plasma. In this study, we experimentally verify how performance is achieved when the direction of the extraction field is at an angle to the direction of motion of the plasma. If the extraction field can be slanted without degradation of the ion source performance, it is considered to be able to shield neutral vapors and debris generated simultaneously with the plasma, which will be advantageous for the long-term operation of the laser ion source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK020  
About • Received ※ 09 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK030 Modelling Growth and Asymmetry in Seeded Self-Modulation of Elliptical Beams in Plasma simulation, wakefield, proton, acceleration 2122
 
  • A. Perera, O. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • Ö. Apsimon, A. Perera, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by STFC UK grant ST/P006752/1. The Authors are grateful for computing time provided by the STFC Scientific Computing Department’s SCARF cluster.
The seeded self-modulation (SSM) of long particle bunches for the generation of gigavolts-per-meter wakefields that can accelerate witness electron beams was first shown using the Super Proton Synchrotron beam as a driver by the AWAKE experiment. The stability of the produced microbunch trains over tens or hundreds of meters is crucial for extrapolating this scheme as proposed for use in several high energy plasma-based linear colliders. However, aside from the competing hosing instability, which has been shown to be suppressible by SSM when that process saturates, few works have examined other effects of transverse asymmetry in this process. Here, we use analytical modelling and 3D particle-in-cell simulations with QuickPIC to characterise the impact on the SSM growth process due to transverse asymmetry in the beam. A metric is constructed for asymmetry in simulation results, showing that the initial azimuthal complexity changes only slightly during SSM growth. Further, we show quantitative agreement between simulations and analytical predictions for the scaling of the reduction SSM growth rate with unequal aspect ratio of the initial beam profile. These results serve to inform planning and tolerances for both AWAKE and other SSM-based novel acceleration methods in the future.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK030  
About • Received ※ 09 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK064 Generating Sub-Femtosecond Electron Beams at Plasma Wakefield Accelerators emittance, electron, simulation, wakefield 2217
 
  • R. Robles, C. Emma, R.M. Hessami, K. Larsen, A. Marinelli
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by US Department of Energy Contracts No. DE-AC02-76SF00515 and by the DOE, Laboratory Directed Research and Development program at SLAC, under contract DE-AC02-76SF00515.
The Plasma-driven Attosecond X-ray source (PAX) project at FACET-II aims to produce attosecond EUV/soft x-ray pulses with milijoule-scale pulse energy via nearly coherent emission from pre-bunched electron beams. In the baseline approach*, a beam is generated using the density downramp injection scheme with a percent-per-micron chirp and 1e-4 scale slice energy spread. Subsequent compression yields a current spike of just 100 as duration which can emit 10 nm light nearly coherently due to its strong pre-bunching. In this work, we report simulation studies of a scheme to generate similarly short beams without relying on plasma injection. Instead, we utilize a high-charge beam generated at an RF photocathode, with its tail acting as the witness bunch for the wake. The witness develops a percent-per-micron chirp in the plasma which is then compressible downstream. The final bunch length demonstrated here is as short as 100 nm, and is limited primarily by emittance effects. The configurations studied in this work are available for experimental testing at existing PWFA facilities such as FACET-II.
*APL Photonics 6, 076107 (2021)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK064  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS015 Basic Relations of Laser-Plasma Interaction in the 3D Relativistic, Non-Linear Regime laser, electron, wakefield, acceleration 2265
 
  • D.F.G. Minenna, E. Bargel, L. Batista, P.A.P. Nghiem
    CEA-IRFU, Gif-sur-Yvette, France
 
  In the approximation where the plasma is considered as a fluid, basic relations are derived to describe the plasma wave driven by an ultra-intense laser pulse. A set of partial differential equations is obtained. It is then numerically solved to calculate the resulting 3D electric field structure that can be used as accelerating cavities for electrons. The laser strength parameter is varied to investigate regimes from weakly nonlinear up to total cavitation where all the initial electrons of the plasma are expelled.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS015  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS032 Simulations of Coherent Electron Cooling with Orbit Deviation electron, simulation, kicker, hadron 2319
 
  • J. Ma, V. Litvinenko, G. Wang
    BNL, Upton, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Coherent electron cooling (CeC) is a novel technique for rapidly cooling high-energy, high-intensity hadron beam. Plasma cascade amplifier (PCA) has been proposed for the CeC experiment in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Cooling performance of PCA based CeC has been predicted in 3D start-to-end CeC simulations using code SPACE. The dependence of the PCA gain and the cooling rate on the electron beam’s orbit deviation has been explored in the simulation studies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS032  
About • Received ※ 16 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT042 Studies for a Laser Wakefield Driven Injector at ELSA synchrotron, booster, laser, linac 2686
 
  • K. Kranz, K. Desch, D. Elsner, M.T. Switka
    ELSA, Bonn, Germany
 
  At the University of Bonn, Germany, the storage ring ELSA extracts electrons with energies up to 3.2 GeV to hadron physics and novel detector testing experiments. We study the feasibility of replacing the current 26 MeV LINAC injector with a laser wakefield accelerator (LWA). For this, contemporary parameters from current LWA setups at other laboratories are assumed and matched to the acceptance of the booster synchrotron. Moreover, a conceptional draft of a potential LWA setup is created. This takes into consideration the influence of building conditions such as available floor space and building vibrations to estimate a setup and laser beam stability of a plasma generating high power laser system and beamline to the plasma cell. The methods and intermediate results of this study will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT042  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT059 Development of a Transfer Line for LPA-Generated Electron Bunches to a Compact Storage Ring storage-ring, injection, quadrupole, dipole 2730
 
  • B. Härer, E. Bründermann, D. El Khechen, A.-S. Müller, A.I. Papash, S.C. Richter, R. Ruprecht, J. Schäfer, M. Schuh, C. Widmann
    KIT, Karlsruhe, Germany
  • L. Jeppe
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • A.R. Maier, J. Osterhoff, E. Panofski
    DESY, Hamburg, Germany
  • P. Messner
    University of Hamburg, Hamburg, Germany
 
  The injection of LPA-generated beams into a storage ring is considered to be one of the most prominent applications of laser plasma accelerators (LPAs). In a combined endeavour between Karlsruhe Institute of Technology (KIT) and Deutsches Elektronen-Synchrotron (DESY) the key challenges will be addressed with the aim to successfully demonstrate injection of LPA-generated beams into a compact storage ring with large energy acceptance and dynamic aperture. Such a storage ring and the corresponding transfer line are currently being designed within the cSTART project at KIT and will be ideally suited to accept bunches from a 50 MeV LPA prototype developed at DESY. This contribution presents the foreseen layout of the transfer line from the LPA to the injection point of the storage ring and discusses the status of beams optics calculations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT059  
About • Received ※ 05 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK044 Ultra-Fast Generator for Impact Ionization Triggering pulsed-power, high-voltage, cathode, electronics 2872
 
  • A.A. del Barrio Montañés, Y. Dutheil, T. Kramer, V. Senaj
    CERN, Meyrin, Switzerland
  • M. Sack
    KIT, Karlsruhe, Germany
 
  Impact ionization triggering can be successfully applied to standard thyristors, thus boosting their dI/dt capability by up to 1000x. This groundbreaking triggering requires applying significant overvoltage on the anode-cathode of thyristor with a slew rate > 1kV/ns. Compact pulse generators based on commercial off-the-shelf (COTS) components would allow the spread of this technology into numerous applications, including fast kicker generators for particle accelerators. In our approach, the beginning of the triggering chain is a HV SiC MOS with an ultra-fast super-boosting gate driver. The super boosting of a 1.7kV rated SiC MOS allows to reduce the MOS rise time by a factor of > 25 (datasheet tr = §I{20}{ns} vs. measured tr < 800ps, resulting in an output voltage slew rate > 1kV/ns and an amplitude > 1kV. Additional boosting is obtained by a Marx generator with GaAs diodes, reaching an output voltage slew rate > 11kV/ns. The final stage will be a Marx generator with medium size thyristors triggered in impact ionization mode with sufficient voltage and current rating necessary for the triggering of a big thyristor. This paper presents the impact ionization triggering of a small size thyristor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK044  
About • Received ※ 16 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS030 Updates, Status and Experiments of CLEAR, the CERN Linear Electron Accelerator for Research electron, experiment, radiation, focusing 3022
 
  • P. Korysko
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • J.J. Bateman, C.S. Robertson
    JAI, Oxford, United Kingdom
  • R. Corsini, M. Dosanjh, L.A. Dyks, A. Gilardi, V. Rieker
    CERN, Meyrin, Switzerland
  • W. Farabolini
    CEA-DRF-IRFU, France
  • K.N. Sjobak
    University of Oslo, Oslo, Norway
 
  The CERN Linear Accelerator for Research (CLEAR) at CERN is a test facility using a 200 MeV electron beam. In 2020 and 2021, a few hardware upgrades were done: comparators for position measurements were added on components, the in-air experimental area was re-arranged in order to provide more space, a robotic system was built to enable remote samples manipulations for irradiation studies, the BPM reading system was optimized and the laser double-bunch system implemented to allow for a doubling of the electron bunch frequency from 1.5 GHz to 3 GHz. In the paper, we describe such improvements, we outline the experimental activities during 2021 and illustrate the diverse program for the next 4 years, including high doses’ irradiation studies for medical applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS030  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROXGD1 A Method for Obtaining 3D Charge Density Distribution of a Self-Modulated Proton Bunch proton, experiment, wakefield, electron 3118
 
  • T. Nechaeva, P. Muggli
    MPI-P, München, Germany
  • L. Verra, G. Zevi Della Porta
    CERN, Meyrin, Switzerland
  • L. Verra
    TUM, Munich, Germany
  • L. Verra
    MPI, Muenchen, Germany
 
  The Advanced Wakefield Experiment (AWAKE) at CERN is the first plasma wakefield accelerator experiment to use a proton bunch as driver. The long bunch undergoes seeded self-modulation (SSM) in a 10 m-long plasma. SSM transforms the bunch into a train of short micro-bunches that resonantly drive high-amplitude wakefields. We use optical transition radiation (OTR) and a streak camera to obtain time-resolved images of the bunch transverse charge density distribution in a given plane. In this paper we present a method to obtain 3D images of the bunch by scanning the OTR across the entrance slit of the streak camera. Reconstruction of the 3D distribution is possible because with seeding self-modulation is reproducible*. The 3D images allow for checking the axi-symmetry of SSM and for detecting the possible presence of the non-axi-symmetric hosing instability (HI).
* F. Batsch et al., Phys. Rev. Lett. 126, 164802 (2021).
 
slides icon Slides FROXGD1 [4.026 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FROXGD1  
About • Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)