JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOPOMS010: Beam Dynamics and Drive Beam Losses Within a Planar Dielectric Wakefield Accelerator

@inproceedings{overton:ipac2022-mopoms010,
  author       = {T.J. Overton and T.H. Pacey and Y.M. Saveliev and G.X. Xia},
  title        = {{Beam Dynamics and Drive Beam Losses Within a Planar Dielectric Wakefield Accelerator}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {641--644},
  eid          = {MOPOMS010},
  language     = {english},
  keywords     = {wakefield, acceleration, emittance, quadrupole, focusing},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-MOPOMS010},
  url          = {https://jacow.org/ipac2022/papers/mopoms010.pdf},
  abstract     = {{Beam-driven dielectric wakefield accelerators (DWA) have the potential to provide accelerating gradients in the GV/m range. The transverse dynamics in such devices need to be understood to avoid instabilities over long transport distances and facilitate beam matching to specific applications (e.g. FELs). This presentation details simulation studies of the magnitude of beam-breakup instability (BBU) in planar dielectric lined waveguides (DLWs). These are for DWA drive beams, with high charge and momentum that can be produced at current facilities. Using a series of perpendicular DLW segments has been proposed to control instabilities over larger distances. Using self-developed software, the beam dynamics of a drive beam within a DLW are simulated and the magnitude of beam losses along a DLW of varying lengths calculated and beam quality preservation investigated. Methods to reduce transverse instabilities have been explored, and the impact of these on the length of a possible DWA acceleration stage are investigated. An acceleration stage with m-scale length, consisting of multiple alternating planar DLWs, is suggested and preservation of beam quality along this distance is shown.}},
}