

13th International Particle Accelerator Conference Bangkok, Thailand June 12-17, 2022

Progress Towards Demonstration of a Plasma-based FEL

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI FRASCATI

Prof. E. Chiadroni

(Dept. of Basic and Applied Sciences for Engineering - Sapienza, University of Rome and INFN-LNF)

- Motivation •
- Methods and Acceleration Mechanism *
 - Laser-based plasma accelerators and beam-based plasma wakefield
- International Scenario
 - Breakthrough results *
- Towards a Plasma-based FEL User Facility

enrica.chiadroni@uniroma1.it

Outline

- **Plasma-based accelerators** hold **great potential to drive** new generation of compact Free-Electron Lasers (FELs) based facilities
- Several advances toward high quality plasma-accelerated beams
 - In particular, energy spread optimization

- accelerating gradient 2-3 orders of magnitude larger than in conventional RF-based accelerators
 - * Maximum accelerating field a plasma can sustain: Wave breaking field

$$E_{Max}[V/m] = \frac{m_e c \omega_p}{e} \approx 100\sqrt{}$$

* Characteristic scale length of the accelerating field, i.e. the plasma wake, is the plasma wavelength, λ_p

$$\lambda_p[\mu m] \approx \frac{3.3 \cdot 10^{10}}{\sqrt{n_0[cm^{-3}]}}$$

enrica.chiadroni@uniroma1.it

* The **ionized plasma** in a gas-filled discharge capillary, a gas cell or a gas jet **can sustain**

 $n_0 = 10^{16} \div 10^{18} cm^{-3}$ $n_0 [cm^{-3}]$

300 μ m @ $n_0 = 10^{16}$ cm⁻³ 50 µm

- * Rapid acceleration of injected electrons to ultra-relativistic energies, inside the micrometer-sized structured plasma environment
 - the trapped electron beam remains short, dense, and free of significant space-charge driven emittance degradation

Acceleration Mechanism

The **driver**, creating the bubble, can be either a

- dense relativistic particle beam (PWFA) of subps duration and kA level peak current
- ultra-intense laser pulse (LWFA), ~10¹⁸ W/cm², of few 10s fs duration

The **witness** can be either **self-injected** or externally injected

enrica.chiadroni@uniroma1.it

 $\varepsilon_n \ll 1mm m$ High quality beam

1D model of FEL interaction => Pierce Parameter

Length along undulator

https://www.lanl.gov/science/1663/june2010/story4b.shtml

Towards a Plasma-based FEL Facility

$$rad, I_{peak} \sim kA, \frac{\Delta\gamma}{\gamma} \ll 1\%$$

$$= \frac{1}{2\gamma} \Big[\frac{I}{I_A} \Big(\frac{\lambda_u K[JJ]}{\sqrt{8\pi\sigma_x}} \Big)^2 \Big]^{1/3}$$

 $P = P_{in} e^{\tilde{\overline{L}g}}$ Saturation Power =>

ρ

- * Long term and shot-to-shot stability and reproducibility
- **High repetition rate: from 10s Hz** to 100s Hz and ~kHz

 Preferable for maximizing average power

enrica.chiadroni@uniroma1.it

	COXINEL	DESY-LUX	SIOM	LBNL-BELLA
Charge density [pC/MeV]	0.5	4	1-5	2
Repetition rate [Hz]	1-10	1	1-5	5
Mean energy [GeV]	0,18-0,4	0.3	0.84	0.1-0.3
Slice energy spread RMS [%]	NA	0,5	0.24-0.4	0.2-1
Charge [pC]	NA	50	8-25	25
Emittance [mm-mrad]	1	1.5 (horz.), 0.3 (vert.)	0.4	0.3-1
FEL wavelength [nm]	UV-VUV	100	6-10	80
Undulator technology	Cryo-PMU	Cryo-PMU	Planar and TGU	Planar + strong focusing
FEL operation modes	Decompression + seeding	Decompression + SASE	SASE, transverse decompression	Decompression + seedir
Key challenge pursued	Demonstrate FEL gain	Demonstrate FEL gain	Demonstrate FEL gain	Demonstrate FEL gain

FEL, free-electron laser; PMU, permanent magnet undulator; RMS, root mean square; SASE, self-amplification of spontaneous radiation; TGU, transverse gradient undulator.

enrica.chiadroni@uniroma1.it

International Scenario for LWFA

Credits by C. Emma et al., High Power Laser Science and Engineering, (2021), Vol. 9, e57, 15 pages.

Article

Free-electron lasing at 27 nanometres based on a laser wakefield accelerator

https://doi.org/	/10.1038/s415	86-021-03678-x
------------------	---------------	----------------

- Received: 5 August 2020
- Accepted: 28 May 2021

Published online: 21 July 2021

Wentao Wang^{1,4}, Ke Feng^{1,4}, Lintong Ke^{1,2}, Changhai Yu¹, Yi Xu¹, Rong Qi¹, Yu Chen¹, Zhiyong Qin¹, Zhijun Zhang¹, Ming Fang¹, Jiaqi Liu¹, Kangnan Jiang^{1,3}, Hao Wang¹, Cheng Wang¹, Xiaojun Yang¹, Fenxiang Wu¹, Yuxin Leng¹, Jiansheng Liu¹²², Ruxin Li^{1,322} & Zhizhan Xu¹

First LWFA-driven SASE FEL

@ SIOM, Shangai

enrica.chiadroni@uniroma1.it

а

b

5

10

15

20

	SLAC FACET-II*	DESY - FLASHForward	Strathclyde*	SPARC LAB
Peak current [kA]	10-500	1	1-100	2.6
Repetition rate [Hz]	1	10 (10 ⁴ after future upgrades)	Variable	1
Mean energy [GeV]	5-10	1	1-5	0.094
Slice energy spread RMS [%]	0.1-1	0.15	0.01-2	0.3
Charge [pC]	10-100	100	0.1-500	20
Emittance [mm-mrad]	1-10	1-20	0.01-1	~2
FEL wavelength [nm]	10-50	Soft X-rays	Hard X-rays	~800
FEL operation modes	Compression + pre-bunching	SASE	Multiple	SASE and Seeded
Key challenge pursued	Attosecond FEL pulses	High average power FEL	Hard X-ray FEL gain	Demonstration of the gain
EEL Constant and DAG	growth in different FEL			

FEL, free-electron laser; RMS, root mean square; SASE, self-amplification of spontaneous radiation,

Credits by C. Emma et al., High Power Laser Science and Engineering, (2021), Vol. 9, e57, 15 pages.

enrica.chiadroni@uniroma1.it

International Scenario for PWFA

operation modes

Nature | Vol 605 | 26 May 2022 | 659 Article

enrica.chiadroni@uniroma1.it

First PWFA-driven SASE FEL

@ SPARC_LAB, INFN Frascati

enrica.chiadroni@uniroma1.it

First PWFA-driven Seeded FEL

@ SPARC_LAB, INFN Frascati

- Pulse energy increase from 30 nJ up to 1 μ m

M. Galletti et al., submitted to NaturePhotonics

- Two-bunches configuration produced directly at the cathode with laser-comb technique
 - 200 pC driver followed by witness bunch (20 pC)
- Ultra-short durations (200 fs + 30 fs)
- Separation approximately equal to half plasma wavelength (~1.2 ps) *

* Energy spread reduction in the beam driven PWFA experiment

- 4 MeV acceleration in 3 cm plasma with 200 pC driver *
 - ~133 MV/m accelerating gradient
 - 2x10¹⁵ cm⁻³ plasma density *
 - Energy spread from 0.2% to 0.12%

R. Pompili et al., *Energy spread minimization in* a beam-driven plasma wakefield accelerator (2021), Nature Physics, **17** (4), pp. 499-503

Two-Bunches in the **Driver-Witness Configuration**

enrica.chiadroni@uniroma1.it

First PWFA transverse normalized emittance characterization •

- *
 - *

First normalized emittance measurement

Multi-shot quadrupole scan technique to measure the plasma-accelerated witness normalized emittance emittance increase from 2.7 um to 3.7 um (rms) during acceleration because of non optimized matching

Courtesy of A. Biagioni (INFN-LNF)

- **Discharge ignition depends on the operating** conditions, since the breakdown voltage depends on the molecules distribution inside the capillary (pressure and length)
- Discharge timing jitter is affected by the **voltage** and the **gas pressure** in the capillary
- To **decrease the time jitter** (and so the shot-to-shot instability) a laser pulse can be used to ignite the discharge

Gas-filled Capillary-Discharge Stabilization

Sapienza Università di Roma

Courtesy of A. Biagioni (INFN-LNF)

- Plasma density instability reduced **from** 25% to 11% at 5kV
- Instability of 5% when operating at 8 kV (evaluated from Stark measurement)

enrica.chiadroni@uniroma1.it

Gas-filled Capillary-Discharge Stabilization

APIENZA Università di Roma

Recent result in the Plasma Lab at SPARC_LAB: First EuPRAXIA plasma source enabling 1.1 GeV (1.5 GV/m)

Image captured during the formation of plasma in the capillary 40 cm long and 2 mm in diameter.

The applied voltage pulse is **9** kV and the peak current reaches about 500 A.

The first 40 cm Long Gas-filled Capillary Discharge

- M. Galletti et al., Advanced Stabilization Methods of Plasma Devices for Plasma-Based - A. Biagioni et al., Gas-filled capillary-discharge stabilization for plasma-based accelerators by

enrica.chiadroni@uniroma1.it

enrica.chiadroni@uniroma1.it

EuPRAXIA: Build a Compact & New Facility

Year

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Eupraxia – ESFRI and Preparatory **Phase Project**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

EuPR

Courtesy R. Assmann

enrica.chiadroni@uniroma1.it

Distributed RI Concept

enrica.chiadroni@uniroma1.it

Courtesy R. Assmann

Courtesy R. Assmann

Headquarter and Site #1: EuPRAXIA@SPARC_LAB

- * Frascati`s future facility > 108 M€ invest funding
- * Beam-driven plasma accelerator
- * Europe`s most compact and most southern FEL
- * The world`s most compact RF accelerator (X band with CERN)

enrica.chiadroni@uniroma1.it

SAPIENZA Università di Roma

Chapter 2. Free Electron Laser design principles

	Units	Full RF case	Plasma case
Electron Energy	GeV	1	1
Bunch Charge	pC	200	30
Peak Current	kA	2	3
RMS Energy Spread	%	0.1	1
RMS Bunch Length	fs	40	4
RMS matched Bunch Spot	μm	34	34
RMS norm. Emittance	μm	1	1
Slice length	μm	0.5	0.45
Slice Energy Spread	%	0.01	0.1
Slice norm. Emittance	μm	0.5	0.5
Undulator Period	mm	15	15
Undulator Strength K		1.03	1.03
Undulator Length	m	12	14
Gain Length	m	0.46	0.5
Pierce Parameter $ ho$	x 10 ⁻³	1.5	1.4
Radiation Wavelength	nm	3	3
Undulator matching β_u	m	4.5	4.5
Saturation Active Length	m	10	11
Saturation Power	GW	4	5.89
Energy per pulse	μJ	83.8	11.7
Photons per pulse	x 10 ¹¹	11	1.5

Table 2.1: Beam parameters for the EuPRAXIA@SPARC_LAB FEL driven by X-band linac or Plasma acceleration

54

enrica.chiadroni@uniroma1.it

are

Expected SASE FEL Performances

Energy region between Oxygen and Carbon K-edge 2.34 nm – 4.4 nm (530 eV -280 eV) Water is almost transparent to radiation in this range while nitrogen and carbon

Courtesy F. Stellato, UniToV

absorbing (and scattering)

Coherent Imaging of biological samples protein clusters, VIRUSES and cells living in their native state **Possibility to study dynamics** ~10¹¹ photons/pulse needed

- * **Impressive progress** has been done **toward the operation of a FEL user facility**
 - Shangai)
 - operation
 - emittance preservation, overall stability gain
- * However, **improvements** are **still needed** in terms of
 - electron beam quality *
 - * sub-percent to sub-per-mille energy spread and mm mrad to sub-mm mrad emittances
 - * **increase** of the **repetition rate** from a few hertz to kilohertz
 - * improvement of shot-to-shot stability
- technology
 - The realization of a plasma-based user facility seems more and more a reality! *

enrica.chiadroni@uniroma1.it

Conclusions

Recent demonstration of SASE FEL driven by both PWFA (SPARC_LAB, INFN - Frascati) and LWFA (SIOM,

* Success driven by the **ability of the community to overcome** several **key challenges** facing plasma-FEL

* **stabilization** and **control** of the acceleration process, which turns into **energy spread mitigation**, normalized

* An entire community is working hard to achieve this result and the selection of **EuPRAXIA**, as **first ever plasma** accelerator project, in the ESFRI Roadmap is the validation of the quality and readiness of the work done and the

Thank you all for the kind attention

