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Abstract
When designing a laser-plasma acceleration experiment,

one commonly explores the parameter space (plasma den-
sity, laser intensity, focal position, etc.) with simulations
in order to find an optimal configuration that, for example,
minimizes the energy spread or emittance of the acceler-
ated beam. However, laser-plasma acceleration is typically
modeled with full particle-in-cell (PIC) codes, which can
be computationally expensive. Various reduced models can
approximate beam behavior at a much lower computational
cost. Although such models do not capture the full physics,
they could still suggest promising sets of parameters to be
simulated with a full PIC code and thereby speed up the
overall design optimization.

In this work we automate such a workflow with a Bayesian
multitask algorithm, where each task has a different fidelity.
This algorithm learns from past simulation results from
both full PIC codes and reduced PIC codes and dynamically
chooses the next parameters to be simulated. We illustrate
this workflow with a proof-of-concept optimization using the
Wake-T and FBPIC codes. The libEnsemble library is used
to orchestrate this workflow on a modern GPU-accelerated
high-performance computing system.

INTRODUCTION
Laser-plasma accelerators (LPAs) are a promising acceler-

ation technology that could have applications in high-energy
physics, medicine, and materials science [1]. Many of these
applications require finely tuning the different parameters
of a given setup (e.g., plasma density, laser intensity, beam
profile) in order to attain optimal performance (e.g., optimal
beam quality). This design optimization is usually done by
running a particle-in-cell (PIC) simulation for each prospec-
tive set of parameters in order to assess its corresponding
performance (often quantified by a single objective function
such as the final beam energy spread). Because these simu-
lations are computationally expensive, however, one would
like to make informed choices about which set of parameters
to evaluate, so as to find the optimal configuration with as
few simulations as possible.

One method to find these parameters is Bayesian opti-
mization [2], whereby a Gaussian process model [3] of the
objective function over the parameter space is progressively
learned. At each iteration of this method, the model sug-

gests the most promising set of parameters to be assessed by
the simulation, and the simulation result is in turn used to
update and refine the model. Importantly, the feasibility of
Bayesian optimization for automated tuning of LPA setups
has recently been demonstrated [4, 5].

A further step to reduce computational cost is to perform
some of the simulations at a lower fidelity. Indeed, a number
of reduced codes for laser-plasma acceleration have been de-
veloped that make different types of approximations. These
approximations can result in dramatically faster simulations,
at the cost of a potential loss of accuracy. Examples of these
approximations include assuming cylindrical symmetry [6],
averaging over the fast laser oscillations [7], or assuming the
wakefield to be quasi-static [7, 8].

Here we show that incorporating lower-fidelity simulation
output from reduced PIC codes into a Bayesian optimiza-
tion method can reduce the overall computational cost of
obtaining a high-fidelity solution by an order of magnitude.
The combination of PIC codes with different fidelities into
a single optimization is enabled by the multitask Bayesian
optimization (MTBO) algorithm [9, 10], a special case of
multifidelity optimization that operates with two levels of fi-
delity (i.e., two tasks): an inexpensive, low-fidelity model for
broad parameter exploration and a computationally demand-
ing, high-fidelity model for which only a reduced number
of well-targeted simulations are performed. Incidentally,
we note that other types of multifidelity algorithms have
also been shown to perform well in a number of problems,
including with multiobjective optimization [11].

MULTITASK BAYESIAN OPTIMIZATION
The MTBO algorithm [9, 10] builds a Gaussian process

model [3] of the simulation output (a scalar that quantifies
beam quality in our case) as a function of both the vector of
design parameters 𝑥 (e.g., plasma density, beam profile pa-
rameters) and the fidelity 𝑑. (We let 𝑑 = 1 denote low-fidelity
and 𝑑 = 2 the high-fidelity, and we denote the respective sim-
ulation output at a given fidelity by 𝑓𝑑(𝑥).) Accordingly, the
correlation kernel used inside the Gaussian process model
depends on both the parameters 𝑥 and the fidelity 𝑑 and is as-
sumed to be of the form 𝑘((𝑑, x), (𝑑′, x′)) = 𝐵𝑑𝑑′𝜅(𝑥 − 𝑥′),
where 𝜅 is typically a Mattérn kernel [3] and 𝐵 is a 2×2 sym-
metric matrix. In practice, the coefficients of 𝐵 (as well as the
parameters of 𝜅) are hyperparameters that are automatically
determined by maximizing the marginal likelihood of the
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previously observed data. In particular, 𝐵12 quantifies the
apparent level of correlation between low- and high-fidelity
results.

Given this model, the algorithm performs an iterative loop
whereby, at each iteration, the following occurs:

• 𝑛1 “promising” points in parameter space {𝑥𝑖}𝑖=1,..,𝑛1
are chosen by maximizing an acquisition function (typi-
cally, the expected improvement [3]) based on the Gaus-
sian process model for the high-fidelity output 𝑓2(𝑥).

• These 𝑛1 points {𝑥𝑖}𝑖=1,..,𝑛1
are evaluated by using

the low-fidelity simulations, and the Gaussian process
model is updated based on these new simulation results.

• The updated Gaussian process model for 𝑓2 is evaluated
on the 𝑛1 original points {𝑥𝑖}𝑖=1,..,𝑛1

, and the 𝑛2 points
(with 𝑛2 < 𝑛1) that give the highest values are selected.

• These 𝑛2 points are evaluated by using the high-fidelity
simulations, and the Gaussian process model is updated
based on these new simulation results.

Thus, unlike other methods that dynamically choose the
fidelity of each evaluation, the MTBO algorithm uses fixed-
size batches for low-fidelity and high-fidelity evaluations.

PROOF-OF-PRINCIPLE STUDY
The effectiveness of the multitask approach is demon-

strated here by means of a proof-of-principle optimization
study combining the simulation codes FBPIC [12] and Wake-
T [13]. While FBPIC provides a high-fidelity, fully electro-
magnetic PIC description of the LPA physics in quasi-3D
geometry [6], Wake-T allows for inexpensive simulations
by using a reduced quasi-static wakefield model with 2D
cylindrical symmetry [14] and an envelope model [15] for
the laser driver.

The setup to be optimized is an LPA stage acting as an
energy booster for an externally injected beam. Given a fixed
laser driver, the goal of the optimizer is to tune the current
profile of the electron beam so that beamloading minimizes
the energy spread while maintaining high charge [16–18].
More specifically, although the wakefield varies in time be-
cause of dephasing, depletion, and diffraction, an optimal
current profile must be found that, on average, results in
uniform acceleration along the beam. This issue is generally
addressed with simulations or directly in experiments [4,
19].

In this study the current profile of the beam is chosen to
be trapezoidal (known to be the optimal profile for an ideal-
ized plasma bubble [17]) and is defined by four optimization
parameters: the current at the head, 𝐼h; the current at the tail,
𝐼𝑡; the length of the beam, 𝐿𝑏; and its longitudinal position
in the wake, parameterized as Δ𝑧l,h = 𝑧𝑙 − 𝑧h, which corre-
sponds to the distance between the position of the head of
the beam, 𝑧h, and the center of the laser driver, 𝑧𝑙. To achieve
both low energy spread and high charge, we combine these
two quantities into a single objective function to maximize:

𝑓 = 𝑘𝑄𝐸MED[GeV]/𝑘MAD, where 𝑘𝑄 = 𝑄tot/𝑄ref is the ratio
between the total beam charge 𝑄tot and a reference charge
𝑄ref = 10 pC and where 𝑘MAD = Δ𝐸MAD/Δ𝐸MAD,ref is
the ratio between the beam relative energy spread Δ𝐸MAD,
measured as the median absolute deviation (MAD), and a
reference Δ𝐸MAD,ref = 0.01. 𝐸MED is the median energy of
the beam. The use of MAD and MED variables provides
a robust measure of the energy distribution of LPA beams,
which typically feature long, low-charge energy tails [4, 19].

The laser driver considered for this study has an energy
𝐸𝐿 = 10 J, a FWHM duration 𝜏FWHM = 25 fs, a spot size
𝑤0 = 40 µm, a wavelength 𝜆0 = 800 nm, and a peak normal-
ized vector potential 𝑎0 ≃ 2.6. The plasma density profile is
a simple 10 cm-long flat-top profile with an on-axis electron
density 𝑛𝑒,0 = 2 × 1017 cm−3 and a parabolic profile in the
radial direction for laser guiding 𝑛𝑒(𝑟) = 𝑛𝑒,0 +𝑟2/(𝜋𝑟𝑒𝑤4

0).
The externally injected electron beam has an initial energy
𝐸𝑏,0 = 200 MeV with an RMS energy spread of 0.1 %. Its
transverse phase-space is elliptical, featuring normalized
emittances of 𝜖𝑛,𝑥 = 3 µm (horizontal) and 𝜖𝑛,𝑦 = 0.5 µm
(vertical). This difference between the horizontal and verti-
cal emittances can typically be observed in beams from LPAs
based on ionization injection as a result of the laser polariza-
tion [4]. The beam parameters exposed to the optimizer can
vary in the following predefined ranges: 𝐼ℎ ∈ [0.1, 10]kA,
𝐼𝑡 ∈ [0.1, 10]kA, 𝐿𝑏 ∈ [1, 20]µm, and Δ𝑧𝑙,ℎ ∈ [40, 60]µm.

The FBPIC simulations are performed by using the
boosted frame technique [20, 21] with a Lorentz boost fac-
tor of 25. They have longitudinal and radial resolutions of
𝑑𝑧 = 𝜆0/80 and 𝑑𝑟 = 0.6 µm, respectively, and use three
azimuthal modes in order to properly describe the ellipticity
of the particle beam. Each simulation is performed on a
single NVIDIA A100 GPU with a typical execution time of
∼45 min. The Wake-T simulations feature longitudinal and
transverse resolutions of 𝑑𝑧 = 𝜏FWHM/20 and 𝑑𝑟 = 0.6 µm,
respectively. Each simulation is performed on a single core
of an AMD EPYC 7643 CPU with a typical execution time
of 4 min to 6 min. The entire multitask optimization is car-
ried out on one compute node with 96 CPU cores and 4
GPUs. One GPU is reserved for the optimizer, which uses
the Ax implementation of the MTBO algorithm [22], while
the other three are allocated for FBPIC simulations. With
this setup, the optimizer is able to perform batches of either
𝑛1 = 90 concurrent low-fidelity simulations with Wake-T
or 𝑛2 = 3 concurrent high-fidelity simulations with FBPIC.
The allocation of GPU and CPU resources to the different
simulations, as well as the coordination and communication
between the simulations and the optimizer is handled by the
libEnsemble library [23].

The typical evolution of a multitask optimization run is
visualized in Fig. 1(a). The large number of Wake-T simula-
tions allows for broad parameter exploration, so that only the
most promising configurations are evaluated with FBPIC. Al-
though the outcomes of the Wake-T and FBPIC simulations
do not fully agree, the clear correlation between them (see
Fig. 1(b)) allows the optimizer to gain valuable information
from the low-fidelity simulation output.
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Figure 1: (a) Visualization of the Wake-T and FBPIC simu-
lation batches carried out during a multitask optimization
run, including the outcome of each simulation and the evo-
lution of the cumulative best objective in both fidelities. (b)
Correlation between the outcome of the FBPIC evaluations
and their Wake-T counterparts for the same run as in (a).
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Figure 2: Average (thick line) and standard deviation
(shaded area) of the evolution of the objective function
𝑓 = 𝑘𝑄𝐸𝑀𝐸𝐷/𝑘𝑀𝐴𝐷 with the multitask and single-fidelity
algorithms. Six runs (thin lines) were performed for each
case. The multitask line includes the values of only the
objective evaluated at high fidelity (FBPIC).
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Figure 3: (a) Plasma wakefields 5 cm into the LPA as ob-
tained from FBPIC (top) and Wake-T (bottom) for the opti-
mal set of parameters. (b) Longitudinal phase space at the
end of the FBPIC simulation.

For comparison, a series of Bayesian optimization runs
with a standard single-fidelity algorithm are also performed.
These runs consist exclusively of FBPIC simulations and are
performed on the same hardware (i.e., batches of 3 simula-
tions running on NVIDIA A100 GPUs). For both the multi-
fidelity and single-fidelity cases, the optimization starts with
a first batch of simulations using randomly chosen points
within the parameter space [24]. Thus, each optimization run
evolves differently. To account for this effect, we performed
6 independent multitask optimization runs and single-fidelity
optimization runs. As seen in Fig. 2, the multitask algorithm
exhibits an average ∼10× speedup over the single-fidelity
approach.

Overall, the simulation with the highest score corresponds
to a case with 𝐼ℎ = 4.70 kA, 𝐼𝑡 = 4.67 kA, 𝐿𝑏 = 6.57 µm and
Δ𝑧𝑙,ℎ = 52.8 µm. This results in a total charge of 142 pC, an
energy of 2.6 GeV (MED), and a narrow energy spread of
0.11 % (MAD). A view of the final longitudinal phase space
of the beam, along with a snapshot of the plasma wakefields
calculated by FBPIC and Wake-T, is shown in Fig. 3. As
expected, differences in the plasma wake can be seen due to
the different approximations made by each code.

CONCLUSION
This proof-of-principle study demonstrates that the pro-

posed multitask approach effectively combines the output
of simulation codes of different fidelity to speed up the opti-
mization of an LPA stage by a factor of ∼10. This automated
process, which is able to extract useful information from
simulation evaluations with reduced-model codes, enables
cost-effective optimization of laser-plasma accelerators in
large parameter spaces while retaining a high-fidelity result.
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