Laser Driven Proton Accelerators and Application Towards High-Repetition Rate Petawatt Laser Experiments With Cryogenic Jets Using a Mechanical Chopper System

Karl Zeil

Helmholtz-Zentrum Dresden-Rossendorf 13th International Particle Accelerator Conference (IPAC'22) June 15, 2022

Advanced accelerator research embedded in independent national programs (Helmholtz Association)

ELBE Center for high power radiation sources - a user facility and advanced accelerator R&D

13th International Particle Accelerator Conference (IPAC'22)

Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

Laser-driven ion acceleration recap – Target normal sheath acceleration (TNSA)

13th International Particle Accelerator Conference (IPAC'22)

Laser-driven proton acceleration – Overview

Energy scaling – two challenges:

- 1. Technological limits for larger laser systems:
 - Advanced accelerator schemes
 - ➤ Indirect, highly non-linear processes
 (instabilities) → high sensitivity on input
 parameters

Laser-driven proton acceleration – Overview

Laser-driven proton acceleration for radiobiological research

compact accelerators for radiotherapy

ultra-high dose rate translational radiobiology

Page 6

Preparation of comparative in vivo radiobiological studies for dose rate effect studies

Radiobiological model & requirements:

- radiobiological endpoint: tumor-growth delay of mouse ear tumor
- irradiated volume Ø 5 mm, 5 mm depth
- 4 Gy < +/- 10%

Page 7

- homogeneity < 10% dev. dose deposition at 4 Gy (< 10% sample-to-sample variation)
- 2 cohorts (Draco PW & UPTD) with 5 treatment groups each

K. Brüchner et al., Radiat. Onc., Vol. 9 (2014) Animal study approval DD24-5131/338/35

13th International Particle Accelerator Conference (IPAC'22)

	Draco PW	UPTD
mean dose		3.9
single dose accuracy (2σ)		14%
dose homogeneity lateral/depth (2o)		9%/2%
mean dose rate		3.6 Gy/min
peak dose rate		-

Setup at Draco PW

platform enables single-shot delivery of mm-scale 3D tumor-conform dose distributions making perfect use of the broadband LPA proton spectrum

T. Ziegler et al., Sci Rep 11 (2021); F.-E. Brack et al., Sci Rep 10 (2020), F. Kroll et al. Nature Physics (2022)

Page 8

13th International Particle Accelerator Conference (IPAC'22)

Accelerator readiness and stability benchmarked via application-specific parameters

Preparation of comparative in vivo radiobiological studies for dose rate effect studies

OncoRay ® Licel Ceter in Ricel Ceter in a seciety Here

- model-conform dose delivery
 - ... mitigation of LPA-inherent spectral intensity fluctuations
- accelerator readiness and stability
- ... stable daily accelerator performance over weeks enabling a bio-driven schedule
- radiobiological pilot study
 - ... meaningful dose-effect data via
 - ... on-demand proton LPA source operation... precise dose delivery & dosimetry... complex *in vivo* sample preparation,
 - irradiation & follow-up

13th International Particle Accelerator Conference (IPAC'22)

 Interesting radiation induced (4 Gy) effect observed, but no significant conclusion because of too small sample number

	Draco PW	UPTD
mean dose	3.9	3.9
single dose accuracy (2σ)	8%	14%
dose homogeneity lateral/depth (2σ)	9%/< 9%	9%/2%
mean dose rate	1.2 – 2.2 Gy/min	3.6 Gy/min
peak dose rate	10 ⁸ Gy/s	-
E Kroll Nature Physics 2022		

concep

Page 10

Upscaling the energy: Enhanced acceleration with nearcritical density targets

Member of the Helmholtz Association

Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

Tailoring the target (plasma) density profile as decisive parameter

Towards high-repetition rate with cryogenic jets using a mechanical chopper

Cryogenic hydrogen jets – pre-expansion

Member of the Helmholtz Association Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

Page 14 13th International Particle Accelerator Conference (IPAC'22)

Cryogenic hydrogen jets – pre-expansion

Page 15 13th International Particle Accelerator Conference (IPAC'22)

ואמוו בכוו ו ה.בכוועשוובעו.עכ ו www.hzdr.de

Cryogenic hydrogen jets – tailoring the density profile

Cryogenic hydrogen jets – tailoring the density profile

13th International Particle Accelerator Conference (IPAC'22)

Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

Cryogenic hydrogen jets – tailoring the density profile

13th International Particle Accelerator Conference (IPAC'22)

Member of the Helmholtz Association

Karl Zeil | k.zeil@hzdr.de | www.hzdr.de

Optimized laser ion acceleration at the relativistic transparency front (RTF-RPA)

u.]

protons [arb

Phase space evolution

- Reflection of the laser pulse at the relativistic transparency front (RTF)
- Protons moving with the RTF are accelerated within the target bulk

M. Rehwald et. al., in review

Optimized laser ion acceleration at the relativistic transparency front (RTF-RPA)

Phase space evolution

Page 20 13th International Particle Accelerator Conference (IPAC'22)

Summary

- Stable beam generation >60MeV and accelerator readiness demonstrated
- First animal irradiation → platform ready for translational research with laser-driven protons
- Enhanced acceleration with near-critical density targets beyond 80 MeV with rep-rated jet target

Page 21 13th International Particle Accelerator Conference (IPAC'22)

Member of the Helmholtz Association

Karl Zeil I k.zeil@hzdr.de I www.hzdr.de

Big Thanks to the Team and Collaborators

Laser radiooncology

Laser particle acceleration

J. Pawelke, E. Beyreuther, K. Brüchner, E. Bodenstein, L. Karsch, E. Lessmann, M. Krause, E. Troost, N. Cordes, C. Richter, et al. K. Zeil, J. Metzkes-Ng, F. Kroll, C. Bernert, E. Beyreuther, L. Gaus, S. Kraft, A. Nossula, M.E.P. Umlandt, M. Rehwald, M. Reimold, H.-P. Schlenvoigt, M. Sobiella, T. Ziegler, S. Bock, R. Gebhardt, U. Helbig, T. Püschel, U. Schramm, T. Cowan, et al. High-field laboratory Dresden (HLD) and HZDR workshop; R. Szabo, et al. (ELI-ALPS); J. Jansen, et al. (DKFZ)

S. Glenzer, C. Curry, M. Gauthier,

J. Kim, F. Fiuza

S. Goede et al.

M. Nichiuchi, H. Kyriama, N. Dover, A. Kon

V. Malka, D. Levy, E. Kroupp (Whelmi)

Thank you for your attention!

fuun

0

Page 23 13th International Particle Accelerator Conference (IPAC'22)