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Conventional accelerators

e Synchrotron radiation in circular machines ~

L _limitation for
light particle colliders m

e Modern RF cavities: limit on accelerating gradient ~ 100 MeV/m
(electric breakdown)

U

e Increase acceleration length to increase partlcle energy
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Image CLIC - possible fuiure linear collider at CERN.
© CERN

Image: Stanford Linear Accelerator (SLAC), USA;
building covering the beam tube is ~3.2 km long!
© Wikipedia



Why PWFA?
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Plasma'based acceleratlon (PWFA) Image: drive bunch creates a plasma wave, which accelerates witness bunch
© J. Vieira, IST Lisbon, Portugal
e Particle bunch or laser pulse propagates through plasma - o ne2
o Electric fields up to Ews = —¢——7¢, (Wpe = 1|

e Plasma electrons oscillation - 1 e & m,
e Transverse and longitudinal electric and magnetic fields — wakefields Accelerating gradient limit [eV/m] ~ 96\/npe [cm®]

e Linear theory: wakefields — sinusoidal oscillations at wpe when nye = 108 cm? = gradient ~ 100 GeV/m



AWAKE experiment

e AWAKE — Advanced Wakefield Experiment

e CERN-based R&D project — collaboration of ~20 institutes
- proton driven PWFA studies

e Final goal - quality-preserving high-energy electron beam
accelerator

The CERN accelerator complex
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Image: AWAKE experimental setup
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Proton drive bunch

e Energy gain of witness bunch < energy loss of drive bunch

e p* bunch - higher energies than laser pulses or e bunches:
SPS p* bunch (used in AWAKE) - ~19 kJ

SLAC e bunch - ~91J

1 PW, 100 fs laser pulse - <100J

e p* bunch - drive wakefields over long distance — no need
for staging
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Figure: Ep = 1 TeV, Ee = 0.62 TeV after 450 m of acceleration.
© A. Caldwell et al., Nature Phys. 5 (2009) 363
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Proton drive bunch

e Energy gain of witness bunch < energy loss of drive bunch
Figure: Ep = 1 TeV, Ee = 0.62 TeV after 450 m of acceleration.
e p* bunch - higher energies than laser pulses or e bunches: 10 _©A. Caldwell et al., Nature Phys. 5 (2009) 363

SPS p* bunch (used in AWAKE) - ~19 kJ

SLAC e bunch - ~91J i single stage!
1 PW, 100 fs laser pulse - <100J ~
= i
o
e p* bunch - drive wakefields over long distance - no need ;;o 05—
for staging @ i

e Theory: resonantly drive high-amplitude wakefields — bunch -
length o, ~ Ape; SPS p* bunch: 0, ~ 12 cm > Ape

! S

e Long p* bunch in plasma - self-modulation instability (SMI) 0 200 400 600
— train of micro-bunches L (m)
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~12 cm




Self-modulation: instability - seeded

No seeding
laser
—>
| pulse
SMI
1 F. Batsch et al., Phys. Rev. Lett. 126, 164802 (2021)

Event number




Self-modulation: instability - seeded

No seeding Seeding

laser

L2 laser Relativistic ionization front
pulse

pulse (RIF) seeding

SMI i

Sudden onset of beam-
plasma interaction - seed
wakefield

Event number

1 F. Batsch et al., Phys. Rev. Lett. 126, 164802 (2021)
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Self-modulation: instability - seeded

Event number

No seeding Seeding
laser e bunc - i
L | qaxr e bunch seeding
—>
puse L4 pulse
SMI SSM | | e bunch drives seed
wakefields
> .. AA : >
L. Verra et al., accepted for publication to Phys. Rev. Lett. (2022)
F. Batsch et al., Phys. Rev. Lett. 126, 164802 (2021)
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Self-modulation: instability - seeded

No seeding
laser
—>
pulse
SMI
Ao "
1 F. Batsch et al., Phys. Rev. Lett.
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eSSM vs eSSM+Hosing

e bunch

WO

e and p* bunches aligned
force on p* bunch centroid = 0
force on p* bunch slice - focusing/defocusing

!

eSSM



eSSM vs eSSM+Hosing

e bunch

0 0Cece

e and p* bunches misaligned

e and p* bunches aligned force on p* bunch centroid # 0 - hosing
force on p* bunch centroid = 0 force on p* bunch slice - focusing/defocusing
force on p* bunch slice - focusing/defocusing 1
1 Hosing + eSSM
eSSM ! !

one plane  plane 1 hosing



position (mm)

e and p* bunches misaligned

e and p* bunches aligned force on p* bunch centroid # 0 - hosing
force on p* bunch centroid = 0 force on p* bunch slice - focusing/defocusing
force on p* bunch slice - focusing/defocusing 1
1 Hosing + eSSM
eSSM ! !

one plane  plane 1 hosing

2.0

15
1.0
0.5 {A 5™
0.0

-0.5{ -

position (mm)

-1.0

-1.5{

-2.0

200 180 160 140 120 100 80 60 200 180 160 140 130 100 80 60
time (ps) time (ps)



position (mm)
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e and p* bunches misaligned

e Hosing occurs in the plane of misalignment ~ force on p* bunch centroid # 0 — hosing
force on p* bunch slice - focusing/defocusing

e Plane of misalignment # main plane of 1
observation?
U Hosing + eSSM
! !
e Need a method to look at two (or more) planes one plane  plane L hosing
simultaneously
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Plasma
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Vary the mirror angle - vary streak camera slit position
across p* bunch transverse distribution
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Results

1. e Vary mirror angle -
e Time-integrated p* bunch charge density distribution as
a function of position across the bunch -
e Find central point
e Determine positions where to take data
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p* bunch charge density
distribution are recorded

Step size — 0.504



counts [arb. units]

Results

1. e Vary mirror angle -

e Time-integrated p* bunch charge density distribution as
a function of position across the bunch -

e Find central point

e Determine positions where to take data
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e Do atest -

e Incoming p* bunch (propagating as if in vacuum)

e Slices placed in linear
rectangular grid - 3D distribution
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Results

1. e Vary mirror angle -

counts [arb. units]

e Time-integrated p* bunch charge density distribution as
a function of position across the bunch -

e Find central point

e Determine positions where to take data
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e p* bunch in plasma -

e Misalign e bunch 1 slit
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Conclusion

e AWAKE: seeding of self-modulation with e bunch - alignment-sensitive
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e Develop a method for simultaneous observation of two (or more) planes

e Do a “streak camera slit scan” across the transverse p* bunch charge density distribution
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Conclusion

e AWAKE: seeding of self-modulation with e bunch - alignment-sensitive
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e Develop a method for simultaneous observation of two (or more) planes

e Do a “streak camera slit scan” across the transverse p* bunch charge density distribution

e Test with the incoming p* bunch (no plasma)

e Test with the p* bunch in plasma: Hosing L slit and eSSM || slit

e Apply to future studies of simultaneous occurrence of hosing and eSSM | ¢

e Is eSSM-only possible?



Conclusion

e AWAKE: seeding of self-modulation with e bunch - alignment-sensitive

e e-p* aligned —~ eSSM e ~ inall planes

U

e Develop a method for simultaneous observation of two (or more) planes

e Do a “streak camera slit scan” across the transverse p* bunch charge density distribution

e Test with the incoming p* bunch (no plasma)
e Test with the p* bunch in plasma: Hosing L slit and eSSM || slit

e Apply to future studies of simultaneous occurrence of hosing and eSSM |

« Is eSSM-only possible? Thank you for your attention!
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