

A method for obtaining 3D charge density distribution of a self-modulated proton bunch

T. Nechaeva¹, P. Muggli¹, L. Verra^{1,2,3}, G. Zevi Della Porta² on behalf of the AWAKE Collaboration

¹ Max-Planck-Institute for Physics, Munich, Germany
 ² CERN, Geneva, Switzerland
 ³ Technical University Munich, Munich, Germany

tatiana.nechaeva@cern.ch

Conventional accelerators

• Synchrotron radiation in circular machines ~ $\frac{1}{m^4}$ – limitation for light particle colliders

• Modern RF cavities: limit on accelerating gradient ~ **100 MeV/m** (electric breakdown)

• Increase acceleration length to increase particle energy

Image: CLIC – possible future linear collider at CERN. © CERN

Image: Stanford Linear Accelerator (SLAC), USA; building covering the beam tube is ~3.2 km long! © Wikipedia

Why PWFA?

Plasma-based acceleration (PWFA):

- \bullet Particle bunch or laser pulse propagates through plasma $\ {\scriptstyle \rightarrow}$
- Plasma electrons oscillation $\ {\scriptstyle \rightarrow}$
- Transverse and longitudinal electric and magnetic fields wakefields
- \bullet Linear theory: wakefields sinusoidal oscillations at ω_{pe}

Image: drive bunch creates a plasma wave, which accelerates witness bunch $\ensuremath{\mathbb{C}}$ J. Vieira, IST Lisbon, Portugal

Electric fields up to
$$E_{WB} = \frac{m_e c \, \omega_{pe}}{e}, \, \omega_{pe} = \sqrt{\frac{n_{pe} e^2}{\varepsilon_0 m_e}}$$

Accelerating gradient limit [eV/m] ~ $96\sqrt{n_{pe}}$ [cm⁻³]

when $n_{pe} = 10^{18} \text{ cm}^{-3} \Rightarrow \text{gradient} \sim 100 \text{ GeV/m}$

AWAKE experiment

- AWAKE Advanced Wakefield Experiment
- CERN-based R&D project collaboration of ~20 institutes
 → proton driven PWFA studies
- \bullet Final goal \rightarrow quality-preserving high-energy electron beam accelerator

The CERN accelerator complex Complexe des accélérateurs du CERN

▶ H⁻ (hydrogen anions) ▶ p (protons) ▶ ions ▶ RIBs (Radioactive Ion Beams) ▶ n (neutrons) ▶ p (antiprotons) ▶ e⁻ (electrons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

Proton drive bunch

- Energy gain of witness bunch \leq energy loss of drive bunch
- p^+ bunch \rightarrow higher energies than laser pulses or e^- bunches: SPS p^+ bunch (used in AWAKE) $\rightarrow \sim 19 \text{ kJ}$
 - SLAC e⁻ bunch $\rightarrow \sim 91 \text{ J}$
 - 1 PW, 100 fs laser pulse \rightarrow < 100 J
- p^+ bunch \rightarrow drive wakefields over long distance \rightarrow no need for staging

Proton drive bunch

- Energy gain of witness bunch \leq energy loss of drive bunch
- p^+ bunch \rightarrow higher energies than laser pulses or e^- bunches: SPS p^+ bunch (used in AWAKE) $\rightarrow \sim 19 \text{ kJ}$
 - SLAC e⁻ bunch $\rightarrow \sim 91 \text{ J}$
 - 1 PW, 100 fs laser pulse \rightarrow < 100 J
- $\bullet\ p^*$ bunch $\rightarrow\ drive\ wakefields\ over\ long\ distance\ \rightarrow\ no\ need$ for staging

Proton drive bunch

- Energy gain of witness bunch \leq energy loss of drive bunch
- p^+ bunch \rightarrow higher energies than laser pulses or e^- bunches: SPS p^+ bunch (used in AWAKE) $\rightarrow \sim 19 \text{ kJ}$
 - SLAC e⁻ bunch $\rightarrow \sim 91 \text{ J}$
 - 1 PW, 100 fs laser pulse \rightarrow < 100 J
- $\bullet\ p^*$ bunch $\rightarrow\ drive\ wakefields\ over\ long\ distance\ \rightarrow\ no\ need$ for staging
- Theory: resonantly drive high-amplitude wakefields \rightarrow bunch length $\sigma_z \sim \lambda_{pe}$; SPS p⁺ bunch: $\sigma_z \sim 12 \text{ cm} \gg \lambda_{pe}$

• Long p⁺ bunch in plasma \rightarrow self-modulation instability (SMI) \rightarrow train of micro-bunches

e⁻ and p⁺ bunches aligned force on p⁺ bunch centroid = 0 force on p⁺ bunch slice \rightarrow focusing/defocusing

Method

Method

across p⁺ bunch transverse distribution

Method

Results

- **1.** Vary mirror angle \rightarrow
 - \bullet Time-integrated p^+ bunch charge density distribution as a function of position across the bunch \rightarrow
 - Find central point
 - Determine positions where to take data

Step size $-0.5\sigma_b$

Results

- **1.** Vary mirror angle \rightarrow
 - \bullet Time-integrated p^+ bunch charge density distribution as a function of position across the bunch \rightarrow
 - Find central point
 - Determine positions where to take data

Results

- **1.** Vary mirror angle \rightarrow
 - \bullet Time-integrated p^+ bunch charge density distribution as a function of position across the bunch \rightarrow
 - Find central point
 - Determine positions where to take data

• AWAKE: seeding of self-modulation with e^{-} bunch \rightarrow alignment-sensitive

• AWAKE: seeding of self-modulation with e⁻ bunch \rightarrow alignment-sensitive

• Hosing occurs in the plane of misalignment \rightarrow if not main plane of observation \rightarrow can be unnoticed \bigcup

• AWAKE: seeding of self-modulation with e⁻ bunch \rightarrow alignment-sensitive

- Hosing occurs in the plane of misalignment \rightarrow if not main plane of observation \rightarrow can be unnoticed \bigvee
- Develop a method for simultaneous observation of two (or more) planes
- Do a "streak camera slit scan" across the transverse p⁺ bunch charge density distribution

• AWAKE: seeding of self-modulation with e⁻ bunch \rightarrow alignment-sensitive

- Hosing occurs in the plane of misalignment \rightarrow if not main plane of observation \rightarrow can be unnoticed $\downarrow\downarrow$
- Develop a method for simultaneous observation of two (or more) planes
- Do a "streak camera slit scan" across the transverse p⁺ bunch charge density distribution
- Test with the incoming p⁺ bunch (no plasma)
- \bullet Test with the p^+ bunch in plasma: Hosing \perp slit and eSSM || slit

• AWAKE: seeding of self-modulation with e⁻ bunch \rightarrow alignment-sensitive

Hosing

cente

SSM

- Hosing occurs in the plane of misalignment \rightarrow if not main plane of observation \rightarrow can be unnoticed \bigcup
- Develop a method for simultaneous observation of two (or more) planes
- Do a "streak camera slit scan" across the transverse p⁺ bunch charge density distribution
- Test with the incoming p⁺ bunch (no plasma)
- \bullet Test with the p^+ bunch in plasma: Hosing \perp slit and eSSM || slit
- Apply to future studies of simultaneous occurrence of hosing and eSSM
- Is eSSM-only possible?

• AWAKE: seeding of self-modulation with e⁻ bunch \rightarrow alignment-sensitive

- Hosing occurs in the plane of misalignment \rightarrow if not main plane of observation \rightarrow can be unnoticed \bigcup
- Develop a method for simultaneous observation of two (or more) planes
- Do a "streak camera slit scan" across the transverse p⁺ bunch charge density distribution
- Test with the incoming p⁺ bunch (no plasma)
- \bullet Test with the p^+ bunch in plasma: Hosing \perp slit and eSSM || slit
- Apply to future studies of simultaneous occurrence of hosing and eSSM
- Is eSSM-only possible?

Thank you for your attention!

cente

Hosing

SSM