Keyword: detector
Paper Title Other Keywords Page
MOPOPT004 Development of a New Clusterization Method for the GEM-TPC Detector electron, experiment, electronics, ECR 233
 
  • M. Luoma, F. Garcia, A. Jokinen, R. Turpeinen, J. Äystö
    HIP, University of Helsinki, Finland
  • T. Blatz, H. Flemming, K. Götzen, C. Karagiannis, N. Kurz, S. Löchner, C. Nociforo, C.J. Schmidt, H. Simon, B. Voss, P. Wieczorek, M. Winkler
    GSI, Darmstadt, Germany
  • D. Chokheli
    Georgian Technical University, Tbilisi, Georgia
  • T. Grahn, S. Rinta-Antila
    JYFL, Jyväskylä, Finland
 
  The Facility for Antiproton and Ion Research FAIR, in Darmstadt Germany, will be one of the largest accelerator laboratories worldwide. The Superconducting FRagment Separator (Super-FRS)* is one of its main components. The Super-FRS can produce, separate and deliver high-energy radioactive beams with intensities up to 1e11 ions/s, covering projectiles from protons up to uranium and it can be used as an independent experimental device. The Gas Electron Multiplier-based Time Projection Chambers (GEM-TPC) in twin configuration is a newly developed beam tracking detector capable of providing spatial resolution of less than 1 mm with a tracking efficiency close to 100% at 1 MHz counting rate. The GEM-TPC (HGB4) was tested at the FRagment Separator (FRS), with 238U beam at 850 MeV/u. A new clusterization method was developed, for the first time and used for an analysis. This method allowed to access to waveforms of each strip signal within a single trigger in an event-by-event basis. The procedures involved in this method will be shown in details.
* H.Geissel et al., The Super-FRS project at GSI, Nucl. Instr. and Meth. in Phys., vol. B204, pp. 71-85, 2003.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT004  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT010 Status of Diamond and LGAD Based Beam-Detectors for the mCBM and CBM Experiments at GSI and FAIR experiment, monitoring, heavy-ion, proton 247
 
  • A. Rost, P.-A. Loizeau
    FAIR, Darmstadt, Germany
  • I. Deppner, N. Herrmann, E. Rubio
    Universität Heidelberg, Heidelberg, Germany
  • J. Frühauf, T. Galatyuk, M. Kis, J. Pietraszko, M. Träger, F. Ulrich-Pur
    GSI, Darmstadt, Germany
  • T. Galatyuk, V. Kedych, W. Krüger
    TU Darmstadt, Darmstadt, Germany
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871072.
The Compressed Baryonic Matter (CBM) experiment* is currently under construction at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The aim of the experiment is the exploration of the Quantum Chromodynamics (QCD) phase diagram of matter at high net-baryon densities and for moderate temperatures. In this contribution a beam monitoring (BMON) system will be presented which will include a high-speed time-zero (T0) detector. The detector system must meet the requirements of the CBM time-of-flight (ToF) measurement system for proton and heavy-ion beams and should also allow for beam monitoring. The detector technology is planned to be based on chemical vapor deposition (CVD) diamond basis but also new Low Gain Avalanche Detector (LGAD) developments are evaluated. In this contribution the beam detector concept will be presented and the results of first prototype tests in the mini-CBM setup will be shown.
*P. Senger, Exploring Cosmic Matter in the Laboratory - The Compressed Baryonic Matter Experiment at FAIR, Particles, vol. 2, no. 4, pp. 499-510, 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT010  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT013 Comparative Study of Broadband Room Temperature THz Detectors for High and Intermediate Frequency Response experiment, electron, laser, photon 257
 
  • R. Yadav, S. Preu
    IMP, TU Darmstadt, Darmstadt, Germany
  • A. Penirschke
    THM, Friedberg, Germany
 
  Funding: Scholarship from Hesse ministry of science and culture (HMWK), Germany.
Room temperature terahertz (THz) detectors based on Field effect transistors (FETs) and Zero-bias Schottky diodes (SD) are prominent members for the temporal-spatial characterization of pulses down to the picosecond scale generated at particle accelerators. Comparative study of in house developed THz detectors both at higher and intermediate frequency (IF) is carried out using table top THz systems and commercially available sources. In this paper, we present high frequency and intermediate frequency (IF) response of Gallium Arsenide (GaAs) FET and Zero-bias Schottky diode THz detectors. The IF results obtained are helpful for understanding and designing of optimized IF circuit with broader bandwidth.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT013  
About • Received ※ 19 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT024 Measuring the Coherent Synchrotron Radiation Far Field with Electro-Optical Techniques laser, radiation, synchrotron, synchrotron-radiation 292
 
  • C. Widmann, M. Brosi, E. Bründermann, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, M.-D. Noll, M.M. Patil, M. Reißig, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • M. Brosi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: M. M. P. acknowledges the support by the DFG-funded Doctoral School KSETA. C. W. achnowledges funding by BMBF contract number 05K19VKD.
For measuring the temporal profile of the coherent synchrotron radiation (CSR) a setup based on electro-optical spectral decoding (EOSD) will be installed as part of the sensor network at the KIT storage ring KARA (Karlsruhe Research Accelerator). The EOSD technique allows a single-shot, phase sensitive measurement of the complete spectrum of the CSR far field radiation at each turn. Therefore, the dynamics of the bunch evolution, e.g. the microbunching, can be observed in detail. Especially, in synchronized combination with the already established near-field EOSD, this method could provide deeper insights in the interplay of bunch profile and CSR generation for each individual electron bunch. For a successful implementation of the EOSD single shot setup, measurements with electro-optical sampling (EOS) are performed. With EOS the THz pulse shape is scanned over several turns by shifting the delay of laser and THz pulse. In this contribution different steps towards the installation of the EOSD far field setup are summarized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT024  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT041 Artificial Intelligence-Assisted Beam Distribution Imaging Using a Single Multimode Fiber at CERN network, experiment, simulation, coupling 339
 
  • G. Trad, S. Burger
    CERN, Meyrin, Switzerland
 
  In the framework of developing radiation tolerant imaging detectors for transverse beam diagnostics, the use of machine learning powered imaging using optical fibers is explored for the first time at CERN. This paper presents the pioneering work of using neural networks to reconstruct the scintillating screen beam image transported from a harsh radioactive environment over a single, large-core, multimode, optical fiber. Profiting from generative modeling used in image-to-image translation, conditional adversarial networks have been trained to translate the output plane of the fiber, imaged on a CMOS camera, into the beam image imprinted on the scintillating screen. Theoretical aspects, covering the development of the dataset via geometric optics simulations, modeling the image propagation in a simplified model of an optical fiber, and its use for training the network are discussed. Finally, the experimental setups, both in the laboratory and at the CLEAR facility at CERN, used to validate the technique and evaluate its potential are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT041  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT045 Beam Loss Localisation with an Optical Beam Loss Monitor in the CLEAR Facility at CERN beam-losses, photon, electron, experiment 351
 
  • S. Benítez Berrocal, E. Effinger, J.C. Esteban Felipe, W. Farabolini, P. Korysko, A.T. Lernevall, B. Salvachúa
    CERN, Meyrin, Switzerland
  • M. Chen
    University of Huddersfield, Huddersfield, United Kingdom
 
  A prototype of a Beam Loss Monitor based on the detection of Cherenkov light in optical fibres is being developed to measure beam losses in the CERN Super Proton Synchrotron. Several testing campaigns have been planned to benchmark the simulations of the system and test the electronics in the CLEAR facility at CERN. During the first campaigns, the emission of Cherenkov light inside optical fibres and the photodetector characterisation were studied. Fibre-based Beam Loss monitors continuously monitor beam losses over long distances. The localisation of the beam loss could be calculated from the timing of the signals generated by the photosensors coupled at both ends of the optical fibre. The experimental results of an optical fibre Beam Loss Monitor installed in the CLEAR facility are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT045  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT046 Linearity and Response Time of the LHC Diamond Beam Loss Monitors in the CLEAR Beam Test Facility at CERN target, electron, beam-losses, operation 355
 
  • S. Morales Vigo, E. Calvo Giraldo, L.A. Dyks, E. Effinger, W. Farabolini, P. Korysko, A.T. Lernevall, B. Salvachúa, C. Zamantzas
    CERN, Meyrin, Switzerland
  • S. Morales Vigo, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Chemical Vapour Deposition (CVD) diamond detectors have been tested during the Run 2 operation period (2015-2018) as fast beam loss monitors for the Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) at CERN. However, the lack of raw data recorded during this operation period restrains our ability to perform a deep analysis of their signals. For this reason, a test campaign was carried out at the CLEAR beam test facility at CERN with the aim of studying the linearity and response time of the diamond detectors against losses from electron beams of different intensities. The signal build-up from multi-bunched electron beams was also analyzed. The conditions and procedures of the test campaign are explained, as well as the most significant results obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT046  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK016 Arc Compressor Test in a Synchrotron - the ACTIS Project linac, electron, synchrotron, radiation 473
 
  • M. Rossetti Conti, A. Bacci, I. Drebot, V. Petrillo, A.R. Rossi, M. Ruijter, L. Serafini
    INFN-Milano, Milano, Italy
  • A. Curcio
    CLPU, Villamayor, Spain
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • G.W. Kowalski, R. Panaś, A.I. Wawrzyniak
    NSRC SOLARIS, Kraków, Poland
  • V. Petrillo
    Universita’ degli Studi di Milano, Milano, Italy
  • E. Puppin
    Politecnico/Milano, Milano, Italy
 
  ACTIS (Arc Compressor Test In a Synchrotron) is an experiment aimed to demonstrate the reliability of arc compressors as lattices capable to increase peak current and brightness of an electron beam as it is bent at large angles. This kind of devices has been proposed at theoretical level in several works over the past decades and could be the key to achieve compact and sustainable Free Electron Lasers in the near future. The experiment has been developed since 2019 in the joint effort between INFN, Solaris National Synchrotron Radiation Center and Elettra - S.T. S.C.p.A. The experiment will take place at Solaris (Kraków). Solaris is a synchrotron whose ring is injected by a 550 MeV linac that will be used to prepare the beam with a proper chirp. ACTIS involves also the commissioning of two beam length detectors to be installed downstream of the linac and of the first ring lap. In addition, the low energy model of the machine was built to identify the optimal working point for the experiment and to foresee the longitudinal profile of the beam that will be measured. In this work we present the experiment and report first results obtained in the study phase.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK016  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK035 Beam-Based Diagnostics of Electric Guide Fields and Lattice Parameters for Run-1 of the Muon g-2 Storage Ring at Fermilab storage-ring, lattice, experiment, dipole 531
 
  • D.A. Tarazona, M. Berz, K. Makino
    MSU, East Lansing, Michigan, USA
  • J.D. Crnkovic, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • K.S. Khaw
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
  • J. Mott
    BUphy, Boston, Massachusetts, USA
  • J. Price
    The University of Liverpool, Liverpool, United Kingdom
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • D.A. Tarazona
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Tishchenko
    BNL, Upton, New York, USA
 
  Funding: Fermi National Accelerator Laboratory (Fermilab) resources, a US DoE, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance under Contract No. DE-AC02-07CH11359.
A portion of the Muon g-2 Storage Ring electric system, which provides vertical beam focusing, exhibited an unexpected time dependence that produced a characteristic evolution of the stored beam during Run-1 of the Muon g-2 Experiment at Fermilab (E989). A method to reconstruct the Run-1 electric guide fields has been developed, which is based on a numerical model of the muon storage ring and optimization algorithms supported by COSY INFINITY. This method takes beam profile measurements from the Muon g-2 straw tracking detectors as input, and it produces a full reconstruction of the time-dependent fields. The fields can then be used for the reproduction of detailed beam tracking simulations and the calculation of ring lattice parameters for acceptance studies and systematic error evaluations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK035  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK046 Design Concept for a Second Interaction Region for the Electron-Ion Collider electron, hadron, optics, collider 564
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, T.J. Michalski, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, C. Weiss, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, K.A. Drees, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177, Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and UT-Battelle, LLC, under contract No. DE-AC05-00OR22725
In addition to the day-one primary Interaction Region (IR), the design of the Electron Ion Collider (EIC) must support operation of a 2nd IR potentially added later. The 2nd IR is envisioned in an existing experimental hall at RHIC IP8, compatible with the same beam energy combinations as the 1st IR over the full center of mass energy range of ~20 GeV to ~140 GeV. The 2nd IR is designed to be complementary to the 1st IR. In particular, a secondary focus is added in the forward ion direction of the 2nd IR hadron beamline to optimize its capability in detecting particles with magnetic rigidities close to those of the ion beam. We provide the current design status of the 2nd IR in terms of parameters, magnet layout and beam dynamics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK046  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS048 Fast Trigger System for Beam Abort System in SuperKEKB hardware, kicker, power-supply, MMI 754
 
  • H. Ikeda, T. Mimashi, S. Nakamura, T. Oki, S. Sasaki
    KEK, Ibaraki, Japan
 
  In order to protect the hardware components of the de-tector and accelerator from sudden beam loss of high beam currents, the fast beam abort system is developed in the SuperKEKB. The previous abort system was not fast enough for sudden beam loss that caused QCS quench, and it gave a damage to the collimator and the Belle-II detector. A fast abort system is required to pre-venting such damage. The abort system consists of sev-eral sensors that generate interlock signal (the loss moni-tor, dose in the Bell-II detector, and the magnet failure etc.), optical cable system to transfer the interlock signal to central control room (CCR), the abort trigger signal generation system and the abort kicker. To reduce total time, we reduce transmission time from local control room to CCR by changing signal cable route. Since the interlock signal produced by magnet power supply was slow, we modified the magnet power supply. For more quick generation of abort trigger signal, we increased number of the abort gap. By these improvements, an average abort time is reduced from 31µsec to 25µsec. This improvement looks small, but it brought preventing the serious radiation damage to many hardware compo-nents. Detail of the system and result is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS048  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST056 Multi-Objective Bayesian Optimization at SLAC MeV-UED electron, gun, controls, timing 995
 
  • F. Ji, A.L. Edelen, R.J. England, P.L. Kramer, D. Luo, C.E. Mayes, M.P. Minitti, S.A. Miskovich, M. Mo, A.H. Reid, R.J. Roussel, X. Shen, X.J. Wang, S.P. Weathersby
    SLAC, Menlo Park, California, USA
 
  SLAC MeV-UED, part of the LCLS user facility, is a powerful ’electron camera’ for the study of ultrafast molecular structural dynamics and the coupling of electronic and atomic motions in a variety of material and chemical systems. The growing demand of scientific applications calls for rapid switching between different beamline configurations for delivering electron beams meeting specific user run requirements, necessitating fast online tuning strategies to reduce set up time. Here, we utilize multi-objective Bayesian optimization(MOBO) for fast searching the parameter space efficiently in a serialized manner, and mapping out the Pareto Front which gives the trade-offs between key beam parameters, i.e., spot size, q-resolution, pulse length, pulse charge, etc. Algorithm, model deployment and first test results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST056  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT053 Study of Bunch Length Measurement by Forward Coherent Smith-Purcell Radiation radiation, experiment, electron, background 1125
 
  • H. Yamada, H. Hama, F. Hinode, K. Kanomata, S. Kashiwagi, S. Miura, T. Muto, I. Nagasawa, K. Nanbu, H. Saito, K. Shibata, K. Takahashi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  We are currently conducting basic research on the development of a non-destructive real-time bunch length monitor using coherent Smith-Purcell radiation at the t-ACTS test accelerator at the Center for Electron Photon Science, Tohoku University. The angular distribution of coherent Smith-Purcell radiation reflects the longitudinal shape of the electron bunch. Using this, we came up with a method to measure the bunch length from the peak angle of the angular distribution. In this presentation, we mainly report the results of an experiment to determine the bunch length from the peak angle of the angular distribution of coherent Smith-Purcell radiation using a 100 fs electron beam of t-ACTS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT053  
About • Received ※ 14 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK002 Results of the RF Power Tests of the ESS Cryomodules Tested at CEA cryomodule, cavity, electron, cryogenics 1186
 
  • O. Piquet, S. Berry, A. Bouygues, E. Cenni, G. Devanz, C. Madec, C. Mayri, P. Sahuquet
    CEA-DRF-IRFU, France
  • C. Arcambal, Q. Bertrand, P. Bosland, T. Hamelin
    CEA-IRFU, Gif-sur-Yvette, France
  • M.J. Ellis
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Pierini
    ESS, Lund, Sweden
  • D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  Eight of the medium and high beta cryomodules deliv-ered to ESS by CEA are tested at CEA before delivery; the two medium and high beta prototypes and the three first of each type of the series. The goal of these tests is to validate the assembly and the performances on few cryomodules before the next cryomodules of the series are delivered to ESS. This paper summarizes the general results obtained during the tests at 2 K and at high RF power, Pmax = 1.1 MW. The cavities reach the ESS re-quirements, Eacc = 16.7 MV/m (Medium beta) and 19.9 MV/m (High beta) with an efficient compensation of the Lorentz detuning by the piezo tuner over the full RF pulse length of 3.6 ms at 14 Hz. After the successful tests at CEA, the first cryomodules have been shipped to ESS where the final acceptance test are performed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK002  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK027 Field Emission Measurements at Lund Test Stand cavity, cryomodule, shielding, SRF 1265
 
  • C.G. Maiano, N. Elias, E. Laface, P. Pierini, L. Sagliano, M.Y. Wang
    ESS, Lund, Sweden
  • E. Cenni
    CEA-IRFU, Gif-sur-Yvette, France
 
  We present here a description of field emission (FE) measurements set-up developed for elliptical cryomodules test activities at Lund Test Stand 2. A test campaign of field emission measurements has been developed and optimized during cryomodules tests. The scintillator detectors (and their respective shields), chosen for these measurements, have been characterized and optimized. The field emission application has been developed and integrated in the cryomodules tests operator interface. The Initial test results are presented and commented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK027  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK030 X-Rays Energy Measurements During the RFQ Conditioning at the European Spallation Source rfq, electron, ion-source, background 1275
 
  • E. Laface, C.G. Maiano, R. Zeng
    ESS, Lund, Sweden
  • O. Piquet
    CEA-DRF-IRFU, France
 
  The Radio Frequency Quadrupole (RFQ) was conditioned at the European Spallation Source during spring 2021. We used part of the conditioning time to estimate the accelerating potential within the RFQ analyzing the x-rays bremsstrahlung radiation emitted by the electrons released and accelerated in the RFQ. The results of these measurements are in good agreement with the theoretical prediction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK030  
About • Received ※ 16 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOYGD3 Isochronous Mode of the Experimental Storage Ring (ESR) at GSI experiment, sextupole, electron, dipole 1620
 
  • S.A. Litvinov, R. Hess, B. Lorentz, M. Steck
    GSI, Darmstadt, Germany
 
  The isochronous optics of the ESR is a unique ion-optical setting in which the particles within a finite momentum acceptance circulate at constant frequency. It is used for direct mass measurements of short-lived exotic nuclei by a Time-of-Flight method. Besides the mass spectrometry, the isochronous ESR has been used as an instrument for the search of short lived isomers stored in the ring, which was performed in 2021 for the first time. Introduction to the isochronous mode of the ESR, comparison with a standard operational mode, recent machine experiments will be presented here. Possible improvements of the isochronous optics at the ESR and perspectives of the isochronous mode at CR, FAIR will be outlined.  
slides icon Slides WEOYGD3 [6.871 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOYGD3  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST003 Implications of the Upgrade II of LHCb on the LHC Insertion Region 8: From Energy Deposition Studies to Mitigation Strategies luminosity, dipole, radiation, experiment 1679
 
  • A. Ciccotelli
    The University of Manchester, Manchester, United Kingdom
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • F. Butin, F. Cerutti, A. Ciccotelli, L.S. Esposito, B. Humann, M. Wehrle
    CERN, Meyrin, Switzerland
  • B. Humann
    TU Vienna, Wien, Austria
 
  Starting from LHC Run3, a first upgrade of the LHCb experiment (Upgrade I) will enable oeration with a significantly increased instantaneous luminosity in the LHC Insertion Region 8 (IR8), up to 2·1033/(cm2 s). Moreover, the proposed second upgrade of the LHCb experiment (Upgrade II) aims at increasing it by an extra factor 7.5 and collecting an integrated luminosity of 400/fb by the end of Run6. Such an ambitious goal poses challenges not only for the detector but also for the accelerator components. Monte Carlo simulations represent a valuable tool to predict the implications of the radiation impact on the machine, especially for future operational scenarios. A detailed IR8 model implemented by means of the FLUKA code is presented in this study. With such a model, we calculated the power density and dose distributions in the superconducting coils of the LHC final focusing quadrupoles (Q1-Q3) and separation dipole (D1) and we highlight a few critical issues calling for mitigation measures. Our study addresses also the recombination dipole (D2) and the suitability of the present TANb absorber, as well as the proton losses in the Dispersion Suppressor (DS) and their implications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST003  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST023 Design of a Very Low Energy Beamline for NA61/SHINE experiment, target, optics, radiation 1741
 
  • C.A. Mussolini, N. Charitonidis
    CERN, Meyrin, Switzerland
  • P. Burrows, C.A. Mussolini
    JAI, Oxford, United Kingdom
  • P. Burrows, C.A. Mussolini
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • Y. Nagai
    Colorado University at Boulder, Boulder, Colorado, USA
  • E.D. Zimmerman
    CIPS, Boulder, Colorado, USA
 
  A new, low-energy branch is being designed for the H2 beamline at the CERN North Experimental Area. This new low-energy branch would extend the capabilities of the current infrastructure enabling the study of particles in the low, 1 - 13 GeV/c, momentum range. The first experiment to profit from this new line will be NA61/SHINE (SPS Heavy Ion and Neutrino Experiment), a multi-purpose experiment studying hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the SPS. However, other future fixed target experiments or test-beam experiments installed in the downstream zones could also benefit from the low-energy particles provided. The proposed layout and expected performance of this line, along with estimates of particle rates, and considerations on the technical implementation of the beamline are presented in this contribution. A description on the instrumentation, which will enable particle-by-particle tagging, crucial for the experiments scope, is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST023  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 29 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT050 Detector Solenoid Compensation in the EIC Electron Storage Ring cavity, solenoid, simulation, collider 1972
 
  • D. Xu
    BNL, Upton, New York, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  The Electron Ion Collider (EIC) uses crab cavities to restore the geometrical luminosity loss. Due to the space limitation, the detector solenoid cannot be compensated locally. This paper presents the lattice design to compensate the detector solenoid without interfering the crab cavities. The skew quadrupoles are employed to avoid additional crab cavities. The correction scheme is checked by beam-beam simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT050  
About • Received ※ 19 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK008 Future Neutrino Beam Studies Under the Framework of Physics Beyond Colliders focusing, experiment, target, background 2044
 
  • E.G. Parozzi
    Universita Milano Bicocca, MILANO, Italy
  • J. Bernhard, M. Brugger, N. Charitonidis, C.A. Mussolini, M.L.A. Perrin-Terrin
    CERN, Meyrin, Switzerland
  • C.A. Mussolini
    JAI, Oxford, United Kingdom
  • Y. Nagai
    ELTE, Budapest, Hungary
  • Y. Nagai
    Colorado University at Boulder, Boulder, Colorado, USA
 
  A Physics Beyond Colliders (PBC) initiative was recently established at CERN to exploit the full scientific potential of its accelerator complex and scientific infrastructure to tackle fundamental open questions in particle physics through experiments complementary to those in current and future colliders. This initiative brings together similar studies to optimize resources globally in order to reach a common goal and promote scientific development efficiently. In this work, we present the work performed by the Conventional Beam Working Group (CBWG) and specifically from the Neutrino Beams (NB) subgroup. The subgroup currently deals with two novel neutrino-tagged beams projects, ENUBET and NUTAG, as well as with a more classic, low energy, beamline dedicated to hadron cross-sections for neutrino beams with the NA61 experiment already installed in the H2 beamline of the CERN North Area. This contribution will detail the advances made with these three projects as well as their status and future plans.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK008  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK057 Towards Direct Detection of the Shape of CSR Pulses with Fast THz Detectors radiation, synchrotron, electron, synchrotron-radiation 2190
 
  • J.L. Steinmann, M. Brosi, E. Bründermann, A. Mochihashi, A.-S. Müller, P. Schreiber
    KIT, Karlsruhe, Germany
 
  Funding: We acknowledge in part support by the Helmholtz President’s strategic fund IVF "Plasma accelerators". This work is funded in part by the BMBF contract number: 05K19VKD.
Coherent synchrotron radiation (CSR) is emitted when the emitting structure is equal to or smaller than the observed wavelength. Consequently, these pulses are very short and most detectors respond with their impulse response, regardless of the pulse length and shape. Here we present single-shot measurements performed at the Karlsruhe Research Accelerator (KARA) using a fast real-time oscilloscope and Schottky barrier detectors sensitive in the sub-THz range. The time response of this setup to CSR pulses emitted by electron bunches during the microbunching instability is shown to be sensitive to the shape of the electron bunch. Our results show how, in the future, the shape of electron bunches can be directly measured using a straightforward setup.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK057  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS020 FAIR SIS100 Laser Cooling Pilot Facility laser, heavy-ion, proton, synchrotron 2284
 
  • S. Klammes, T. Kühl, P.J. Spiller, T. Stöhlker, D.F.A. Winters
    GSI, Darmstadt, Germany
  • M.H. Bussmann, U. Schramm, M. Siebold
    HZDR, Dresden, Germany
  • M.H. Bussmann
    CASUS, Görlitz, Germany
  • J. Gumm, B. Langfeld, T. Walther
    TU Darmstadt, Darmstadt, Germany
  • V. Hannen, K. Ueberholz
    Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
  • X. Ma, W.Q. Wen
    IMP/CAS, Lanzhou, People’s Republic of China
  • U. Schramm
    TU Dresden, Dresden, Germany
  • T. Stöhlker
    HIJ, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • T. Walther
    HFHF, Frankfurt am Main, Germany
 
  We present new (preliminary) results from a recent (May 2021) beam experiment for laser cooling of bunched relativistic carbon ion beams at the ESR of the GSI Helmholtz Centre in Darmstadt, Germany. We were able to use the new pulsed UV laser system from the TU Darmstadt, which has a very high repetition rate, a variable pulse duration and high UV power (up to 250 mW @ 257 nm). Using this laser, we have - for the first time - demonstrated laser cooling of bunched relativistic ion beams for different laser pulse durations (166-740 ps) at a ~10 MHz repetition rate. In addition, we could use the moveable in-vacuo (X)UV detection system from Münster University to study the fluorescence from the laser-excited ions. Finally, we have observed clear effects in the amount of detected fluorescence from the ions using our new ion bunch - laser pulse timing scheme. These studies are also highly relevant for the SIS100 laser cooling pilot facility, which is currently being realized at FAIR.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS020  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST030 Laser Instrumentation and Insertion Device Measurement System undulator, laser, controls, experiment 2513
 
  • R. Khullar, S.M. Khan, G. Mishra
    Devi Ahilya University, Indore, India
  • M. Gehlot
    MAX IV Laboratory, Lund University, Lund, Sweden
  • H. Jeevakhan
    NITTTR, Bhopal, India
 
  In this paper, we discuss the Hall probe, pulsed wire and stretched wire magnetic measurement systems indigenously developed and installed at the university laboratory at Devi Ahilya Vishwa Vidyalaya, Indore, India. The laser instrumentation such as position measuring detector, laser scanning micrometre, Wollaston interferometer and Michelson interferometer improves the Hall probe sledge alignment and magnet alignment in the undulator thus improves magnet measurement accuracy. The salient features with design specifics of the laser instrumentation along with magnetic measurement system parameters are described with context to some prototype undulators designed and developed in the laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST030  
About • Received ※ 04 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST048 RHIC Machine Protection System Upgrades kicker, power-supply, operation, monitoring 2548
 
  • M. Valette, D. Bruno, K.A. Drees, P.S. Dyer, R.L. Hulsart, J.S. Laster, J. Morris, G. Robert-Demolaize, J. Sandberg, C. Schultheiss, T.C. Shrey, G.M. Tustin
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
’In order to protect the future sPHENIX detector from spontaneous and asynchronous firing of one of the five RHIC abort kickers, mechanical relays were added to the triggering channel for each of them. The mechanical relays add several milliseconds to the delay between the detection of a failure or beam loss and the beam being safely disposed of. In order to account for this delay new inputs were included into the RHIC Machine Protection System to ensure detection of abnormal conditions as early as possible. These inputs include system diagnostics and beam measurements such as Beam Position Monitor signals. In this paper we detail the upgrades that will allow reliable operations with high intensity and high energy ion beams and the new detector as well as related operational challenges and how they were addressed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST048  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT004 Design of a Compact 180-Degree Single-Shot Energy Spectrometer Based on a Halbach Dipole Magnet electron, dipole, vacuum, simulation 2564
 
  • R. Bazrafshan, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, N.H. Matlis
    CFEL, Hamburg, Germany
  • F.X. Kaernter
    DESY, Hamburg, Germany
 
  In the AXSIS project at DESY, we develop compact THz accelerating structures for a table-top x-ray source. Acceleration is achieved by passing the electron beam through a dielectric-loaded waveguide powered by multi-cycle THz radiation. The final electron energy strongly depends on THz-power injected into the LINAC and timing. Thus in first experiments we expect large energy fluctuations and a large range of energies to cover. We designed an electron energy spectrometer for a wide range of final energies covering 5 to 20 MeV in a single-shot. Here, we present the design of an energy spectrometer which uses a compact dipole magnet based on the Halbach array concept to deflect the electron beam through a 180° path intercepted by a Fiber Optic Scintillator (FOS) mounted inside the vacuum perpendicular to the beam. The 180-degree bending geometry provides the possibility of having the focus point of all energies at the same distance from the magnet edge which makes the design simpler and more compact. It also removes the necessity of installing a safety dipole at the end of the accelerator. A slit system at the spectrometer entrance increases resolution to better than 0.2%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT004  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS029 Testing the Properties of Beam-Dose Monitors for VHEE-FLASH Radiation Therapy electron, radiation, experiment, real-time 3018
 
  • J.J. Bateman, P. Burrows, L.A. Dyks
    JAI, Oxford, United Kingdom
  • R. Corsini, M. Dosanjh, W. Farabolini, A. Gerbershagen, N. Heracleous, P. Korysko, S. Morales Vigo, V. Rieker, B. Salvachúa, M. Silari, G. Zorloni
    CERN, Meyrin, Switzerland
  • F. Murtas
    LNF-INFN, Frascati, Italy
 
  Very High Energy Electrons (VHEE) of 50 - 250 MeV are an attractive choice for FLASH radiation therapy (RT). Before VHEE-FLASH RT can be considered for clinical use, a reliable dosimetric and beam monitoring system needs to be developed, able to measure the dose delivered to the patient in real-time and cut off the beam in the event of a machine fault to prevent overdosing the patient. Ionisation chambers are the standard monitors in conventional RT; however, their response saturates at the high dose rates required for FLASH. Therefore, a new dosimetry method is needed that can provide reliable measurements of the delivered dose in these conditions. Experiments using 200 MeV electrons were done at the CLEAR facility at CERN to investigate the properties of detectors such as diamond beam loss detectors, GEM foil detectors, and Timepix3 ASIC chips. From the tests, the GEM foil proved to be the most promising.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS029  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS032 Advances in the Optimization of Medical Accelerators proton, network, medical-accelerators, FEL 3030
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 675265.
Between 2016 and 2020, 15 Fellows have carried out collaborative research within the 4 M€ Optimization of Medical Accelerators (OMA) EU-funded innovative train-ing network. Based at universities, research and clinical facilities, as well as industry partners in several European countries, the Fellows have successfully developed a range of beam and patient imaging techniques, improved biological and physical models in Monte Carlo codes, and also helped improve the design of existing and future clinical facilities. This contribution presents three selected OMA research highlights: the use of Medipix3 for dosimetry and real-time beam monitoring, studies into the technical challenges for FLASH proton therapy, recognized by the European Journal of Medical Physics’ 2021 Galileo Gali-lei Award, and research into novel monitors for in-vivo dosimetry that emerged on the back of the OMA network.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS032  
About • Received ※ 05 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS054 Beam Lines and Stations for Applied Research Based on Ion Beams Extracted from Nuclotron radiation, target, experiment, diagnostics 3096
 
  • G.A. Filatov, A. Agapov, A.A. Baldin, A.V. Butenko, A.R. Galimov, S.Yu. Kolesnikov, K.N. Shipulin, A. Slivin, E. Syresin, G.N. Timoshenko, A. Tuzikov, A.S. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • S. Antoine, W. Beeckman, X.G. Duveau, J. Guerra-Phillips, P.J. Jehanno
    SIGMAPHI S.A., Vannes, France
  • D.V. Bobrovskiy, A.I. Chumakov
    MEPhI, Moscow, Russia
  • P.N. Chernykh, S. Osipov, E. Serenkov
    Ostec Enterprise Ltd, Moscow, Russia
  • D.G. Firsov, A.S. Kubankin, Yu.S. Kubankin
    LLC "Vacuum systems and technologies", Belgorod, Russia
  • I.L. Glebov, V.A. Luzanov
    GIRO-PROM, Dubna, Moscow Region, Russia
  • T. Kulevoy
    NRC, Moscow, Russia
  • Y.E. Titarenko
    ITEP, Moscow, Russia
 
  New beamlines and irradiation stations of the Nuclotron-based Ion Collider fAcility (NICA) are currently under construction at JINR. These facilities for applied research will provide testing on capsulated microchips (ion energy range of 150-500 MeV/n) at the Irradiation Setup for Components of Radioelectronic Apparatus (ISCRA) and space radiobiological research (ion energy range 400-1100 MeV/n) at the Setup for Investigation of Medical Biological Objects (SIMBO). In this note, the technical details of SIMBO and ISCRA stations and their beamlines are described and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS054  
About • Received ※ 20 May 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS055 Commissioning of the SOCHI Applied Station Beam and Beam Transfer Line at the NICA Accelerator Complex vacuum, controls, radiation, booster 3099
 
  • A. Slivin, A. Agapov, A.A. Baldin, A.V. Butenko, D.E. Donets, G.A. Filatov, A.R. Galimov, K.N. Shipulin, E. Syresin, A. Tuzikov, V.I. Tyulkin
    JINR, Dubna, Moscow Region, Russia
  • D.V. Bobrovskiy, A.I. Chumakov, S. Soloviev
    MEPhI, Moscow, Russia
  • I.L. Glebov, V.A. Luzanov
    GIRO-PROM, Dubna, Moscow Region, Russia
  • A.S. Kubankin
    LPI, Moscow, Russia
  • A.S. Kubankin
    BelSU, Belgorod, Russia
  • T. Kulevoy, Y.E. Titarenko
    ITEP, Moscow, Russia
  • A.M. Tikhomirov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The SOCHI (Station of CHip Irradiation) station was constructed at the NICA accelerator complex for single event effect testing of decapsulated microchips with low-energy ion beams (3.2 MeV/n). The peculiarity of microchip radiation tests in SOCHI is connected with the pulse beam operation of the heavy ion linear accelerator (HILAc) and a restriction on the pulse dose on the target. The SOCHI station construction, the equipment and the results of the first beam runs are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS055  
About • Received ※ 26 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS056 An Overview of the Applications of MIR and THz Spectroscopy in Astrochemistry Studies experiment, electron, FEL, radiation 3102
 
  • C. Suwannajak, U. Keyen, A. Leckngam, N. Tanakul
    NARIT, Chiang Mai, Thailand
  • W. Jaikla, S. Pakluea, P. Wongkummoon
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • M. Jitvisate
    Suranaree University of Technology, Nakhon Ratchasima, Thailand
  • P. Nimmanpipug, S. Rimjaem
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
  • S. Pakluea, S. Rimjaem, P. Wongkummoon
    Chiang Mai University, Chiang Mai, Thailand
  • T. Phimsen
    SLRI, Nakhon Ratchasima, Thailand
 
  Interstellar complex molecules can be found in molecular clouds which are spread throughout our galaxy. Some of these molecules are thought to be the precursors of bio-molecules. Therefore, understanding the formation processes of those interstellar complex molecules is crucial to understanding the origin of the building blocks of life. There are currently more than a hundred known complex molecules discovered in interstellar clouds. However, the formation processes of those molecules are not yet well understood since they occur in very extreme conditions and very short time scale. Ultrafast spectroscopy can be applied to study those processes that occur in the time scale of femtoseconds or picoseconds. In this work, we present an overview of the applications of MIR and THz pump-probe experiments in astrochemistry studies. An experimental setup to simulate space conditions that mimic the environments where the interstellar complex molecules are formed is currently being developed at the PBP-CMU Electron Linac Laboratory. Then, we present our development plan of the experimental station and its current status.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS056  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)