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Abstract
A physics-informed generative convolutional neural net-

work (CNN)-based 6D phase space diagnostic is pre-
sented which generates all 15 unique 2D projections (𝑥, 𝑦),
(𝑥, 𝑦′),...,(𝑧, 𝐸) of a charged particle beam’s 6D phase space
(𝑥, 𝑦, 𝑧, 𝑥′, 𝑦′, 𝐸). The CNN is trained by supervised learning
over a wide range of input beam distributions, accelerator
parameters, and the associated 6D beam phase spaces at
multiple accelerator locations. The CNN is applied in an un-
supervised adaptive manner without knowledge of the input
beam distribution or accelerator parameters and is robust to
their unknown time variation. Adaptive feedback automati-
cally tunes the low-dimensional latent space of the encoder-
decoder CNN to predict the 6D phase space based only on
2D (𝑧, 𝐸) longitudinal phase space measurements from a
device such as a transverse deflecting RF cavity (TCAV).
This method has the potential to provide diagnostics beyond
the existing state of the art at many accelerator facilities.
Studies are presented for two very different accelerators: the
5-meter-long ultra-fast electron diffraction (UED) HiRES
compact accelerator at LBNL and the kilometer long plasma
wakefield accelerator FACET-II at SLAC.

INTRODUCTION
Particle accelerators are large complex systems with many

coupled components. Accelerator beams are complex ob-
jects with dynamics governed by nonlinear collective effects
such as space charge and coherent synchrotron radiation.
Because of their complexity, particle accelerator controls
and diagnostics can greatly benefit from advanced machine
learning (ML) [1], and control theory techniques.

Supervised learning techniques are being applied at
CERN for the reconstruction of magnet errors in the incred-
ibly large (thousands of magnets) LHC lattice [2]. Bayesian
methods have been developed for online accelerator tuning
of the LCLS [3], Bayesian methods with safety constraints
are being developed at the SwissFEL and the High-Intensity
Proton Accelerator at PSI [4], and at SLAC Bayesian meth-
ods are being developed for the challenging problem of hys-
teresis [5] and surrogate models are being developed for
the beam at the injector [6]. Convolutional neural networks
(CNN) have been used to generate incredibly high resolution
virtual diagnostics of the longitudinal phase space (LPS)
of the electron beam in the EuXFEL [7]. A laser plasma
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wakefield accelerator has also been optimized by utilizing
Gaussian processes at the Central Laser Facility [8].

A limitation of standard ML methods is the requirement of
re-training whenever a system changes. Because accelerators
are changing continuously and detailed beam measurements
usually interrupt operations repetitive re-training is not a
feasible solution. Recently, powerful model-independent
feedback control methods, known as extremum seeking (ES),
have been developed which can handle unknown and quickly
time-varying nonlinear systems in which the direction of
the controller’s input is unknown and quickly time-varying
[9, 10]. For example, it is possible to use ES for RF cavity
resonance control based only on ambiguous reflected power
measurements [11]. A limitation of model-independent feed-
back is the possibility of getting stuck in a local minimum.

Due to the complimentary strengths and weaknesses of
ML and model-independent feedback, efforts are being made
to combine the two fields via adaptive ML (AML) which pro-
vides the best of both worlds: an ability to learn directly from
large complex data, while maintaining robustness to time
variation and distribution shift. The first demonstration of
the AML approach was the use of neural networks together
with ES for automatic control of the time-varying longitudi-
nal phase space distribution of the LCLS beam [12]. AML
methods have also combined CNNs and ES to track time-
varying input beam distributions at the HiRES UED [13],
and preliminary results have shown an ability to adaptively
tune the low-dimensional latent space of encoder-decoder
CNNs to track all 15 unique 2D projections of beam’s 6D
phase space despite unknown and time-varying input beam
distributions and accelerator and beam parametes [14].

AML FOR 6D DIAGNOSTICS
In this work we present simulation-based AML studies

at the HiRES UED [15], for predicting all 15 unique 2D
projections of a charged particle beam with unknown and
time-varying input beam conditions at the photocathode, un-
known beam charge and injector solenoid magnet strength,
and demonstrate that this method has the capability to accu-
rately predict beyond the span of the training set data.

Time-varying systems, or systems with distribution shift,
are an open problem and an active area of research in the ML
community [16–20]. In this work we tackle the problem of
distribution shift by incorporating model-independent adap-
tive feedback directly within the architecture of an encoder-
decoder CNN which takes beam distributions and parame-
ters (charge and solenoid current) as inputs and generates

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUOXGD3

TUOXGD3C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

776

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T03: Beam Diagnostics and Instrumentation



Figure 1: A: 15 2D projections of a beam’s 6D phase space, 𝜌𝑖𝑗. B: The same 15 2D projections generated by the CNN, ̂𝜌𝑖𝑗.
C: Absolute difference | ̂𝜌𝑖𝑗 − 𝜌𝑖𝑗|. Color scale of each projection set by maximum value of actual projection: max {𝜌𝑖𝑗}.
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15 256×256 pixel 2D projections (∼ 106 dimensions) of the
beam’s 6D phase space downstream from the injector, as
shown in Fig. 1, where the CNN’s predictions are compared
to the ground truth for a beam with unknown input distri-
bution and unknown charge passing through an accelerator
with an unknown solenoid strength. Our CNN is applied
in an unsupervised adaptive way by squeezing down to a
2D latent space between the encoder and decoder sections
which is adaptively tuned using ES with time-varying cost

𝐶(𝑡) = ∬ ∣𝜌𝑧,𝐸(𝑡) − ̂𝜌𝑧,𝐸(𝑡)∣ 𝑑𝐸𝑑𝑧, (1)

a comparison between the CNN’s longitudinal phase space
(LPS) prediction ̂𝜌𝑧,𝐸 and the measurement of the LPS as
provided by a TCAV 𝜌𝑧,𝐸. By forcing the CNN to simulta-
neously generate all 15 projections of the 6D phase space
we introduced observational biases directly through data em-
bodying the underlying physics, allowing the CNN to learn
functions that reflect the physical structure of the data [21].

Figure 2: Error is shown in percent for each of the 15 pro-
jections of the beam’s 6D phase space as the input beam
distribution, charge, and solenoid strength are moved beyond
the span of the training set.

TRACKING PHASE SPACE
Figure 2 shows the results of changing the input beam dis-

tribution, beam charge, and solenoid current far beyond the
span of the training data. The black lines show the change
relative to the initial starting condition. The green lines
show the CNN’s errors if assuming known beam distribu-
tion, charge, and solenoid strength, with catastrophic failure
beyond the span of the training set where the CNN’s predic-
tions are far worse than simply doing nothing. Finally, the
red lines show the error when we do not have access to the
unknown beam distribution, charge, and solenoid strength,
but with the use of adaptive feedback which has access to

the (𝑧, 𝐸) projection to be used as feedback within the latent
space by continuously minimizing the cost function (1).

CONCLUSIONS
We have demonstrated preliminary studies of a physics-

informed AML method for tracking all 15 projections of a
charged particle beam with unknown and time-varying initial
distribution and charge at the photocathode and unknwon
and time-varying solenoid strength at the injector based only
on TCAV measurements of the (𝑧, 𝐸) LPS.
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