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μBunch 
Instabilities

@EuXFEL

Typical 2D (x,y) beam profile, 
not a simple Gaussian.

Motivation: Initial beam distributions are time-varying and beam 
dynamics are governed by complex collective effects such as 
wakefields, space charge, and coherent synchrotron radiation

Example images of laser spot

(10 Aug. 2016, 11 Nov. 2017)

Cathode spot

Time-Varying Input Beam 
Distributions

1 year later

Bunch compression amplifies small 
time-varying perturbations in 

initial beam distributions.

Physics based models can simulate 
exquisite detail including μBunch 
instabilities (10 hours on thousands 
of NERSC cores!). 

J. Qiang et al. PRAB, 20, 054402, 2017



Example shared by researchers from SLAC: time-varying system shows limitations of 
traditional ML approaches. - Neural network predicting σy beam size at some test stand.
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Simple numerical example: nonlinear simple harmonic oscillator 
with time-varying initial conditions, inputs, and parameters.

Small changes to the initial position, velocity, or non-linear coefficient ε, 
drastically change the trajectories.

Motivation: Traditional ML methods fail for time-varying systems 
(distribution shift), requiring continuous re-training.



Bayesian Neural Networks

Mishra, Aashwin Ananda, et al. "Uncertainty quantification for 
deep learning in particle accelerator applications." Physical 
Review Accelerators and Beams 24.11 (2021): 114601.

LCLS-II longitudinal phase space simulations predictions.

Convery, O., Smith, L., Gal, Y., & Hanuka, A. (2021). Uncertainty 
quantification for virtual diagnostic of particle accelerators. 
Physical Review Accelerators and Beams, 24(7), 074602.

LCLS-II measured longitudinal phase space predictions.

Ensembles of Deep Neural Networks

Related work: Uncertainty quantification to understand how much an 
ML model can be trusted for a changing system (A. Hanuka).



Robust Adaptive Machine Learning

Machine Learning

• Neural Networks
• Deep RL
• Global learning
• Cannot handle time-

varying systems

-k

Model—Independent Feedback

• Adaptive Control
• Extremum Seeking
• Robust to time-variation
• Local feedback, local minima

Approach: Adaptive ML combines robust model-independent 
adaptive feedback with deep physics-informed CNNs.

For Time-Varying systems with distribution shift



Physics-Informed Adaptive ML for 6D phase space diagnostics. Observational biases introduced directly
through data that embody the underlying physics to learn functions that reflect the physical structure of
the data. Encoder-decoder CNN for nonlinear data compression: Low-dimensional latent space tuning.

A. Scheinker. "Adaptive machine learning for time-varying systems: 
low dimensional latent space tuning." Journal of Instrumentation
16.10 (2021): P10008.

A. Scheinker, F. Cropp, S. Paiagua, & D. Filippetto. “An adaptive approach 
to machine learning for compact particle accelerators.” Scientific 
Reports 11, 19187, 2021.

6D

2D
 p

ro
je

ct
io

ns



AML Development at HiRES – Compact Ultra-fast Electron Diffraction (UED)
Longitudinal phase space measurements used to guide adaptive feedback within 
2D latent space to predict all 2D projections of a beam’s 6D phase space.

Input beam distribution

5 input HiRES parameters

adaptive feedbackES

+

prediction

measurement error

HiRES

52x52
pixels

~2700 dimensional 
input

2D latent space
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256x256
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output



True CNN Difference
15 projections of 6D phase space @ Q=0.25 pC, S=4.65 Amps



True CNN Difference
15 projections of 6D phase space @ Q=1.0 pC, S=4.85 Amps



Looking into the CNN’s 2D Latent space representation of 100 input 
beams, we see that it has naturally clustered bunches by solenoid 
strength and charge.

Colored by solenoid strength [A] Colored by charge [pC]
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Robustness test: Moving far beyond the span of the training data to 
an unseen input beam distribution, higher solenoid strength, and 
larger charge.

Colored by solenoid strength [A] Colored by charge [pC]



6D phase space projections for beam and parameters far outside of training set.

True
CNN using known beam distribution, 

solenoid, and charge as inputs
AML with adaptive feedback and unknown 
beam distribution, solenoid, and charge.



Showing the errors [%] of 15 projections of the 6D phase space as the input beam 
distribution, solenoid current and bunch charge leave the span of the training set .

Change: % difference of the 15 projections
relative to initial input and parameter settings
as the beam changes.

CNN: % difference of the 15 projections if the
input beam and parameter settings are known.
The error remains small within the span of the
training set and then the CNN catastrophically
fails as the training set is left behind (it is
actually worse than doing nothing), as
expected.

AML: % error of the 15 projections if the input
beam and parameter settings are unknown,
but adaptive ML is used for active feedback
based on (z,E) measurements, resulting in
higher accuracy tracking and no catastrophic
failure with this robust approach.


