Paper | Title | Page |
---|---|---|
MOPOPT002 | Improvements on Sirius Beam Stability | 226 |
|
||
Sirius is a Synchrotron Light Source based on a 3 GeV electron storage ring with 518 meters circumference and 250 pm.rad emittance. The facility is built and operated by the Brazilian Synchrotron Light Laboratory (LNLS), located in the CNPEM campus, in Campinas. A beam stability task force was recently created to identify and mitigate the orbit disturbances at various time scales. This work presents studies regarding ground motion (land subsidence caused by groundwater extraction), improvements in the temperature control of the storage ring (SR) tunnel air conditioning (AC) system, vibration measurements in accelerator components and the efforts concerning the reduction of the power supplies’ ripple. The fast orbit feedback implementation and other future perspectives will also be discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT002 | |
About • | Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT003 | Studying Instabilities in the Canadian Light Source Storage Ring Using the Transverse Feedback System | 230 |
SUSPMF081 | use link to see paper's listing under its alternate paper code | |
|
||
The Transverse Feedback system at the Canadian Light Source can identify, categorize, and mitigate against periodic instabilities that arise in the storage ring beam. By quickly opening and closing the feedback loop, previously mitigated instabilities will be allowed to grow briefly before being damped by the system. The resulting growth in the beam oscillation amplitude curve can be analyzed to determine growth/damp rates and modes of the coupled bunch oscillations. Further measurements can be collected via active excitement of modes rather than passive growth. These Grow/damp and Excite/Damp curves have been collected and analyzed for various storage ring beam properties, including beam energy, machine chromaticity, and in-vacuum insertion device gap widths. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT003 | |
About • | Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT004 | Development of a New Clusterization Method for the GEM-TPC Detector | 233 |
SUSPMF082 | use link to see paper's listing under its alternate paper code | |
|
||
The Facility for Antiproton and Ion Research FAIR, in Darmstadt Germany, will be one of the largest accelerator laboratories worldwide. The Superconducting FRagment Separator (Super-FRS)* is one of its main components. The Super-FRS can produce, separate and deliver high-energy radioactive beams with intensities up to 1e11 ions/s, covering projectiles from protons up to uranium and it can be used as an independent experimental device. The Gas Electron Multiplier-based Time Projection Chambers (GEM-TPC) in twin configuration is a newly developed beam tracking detector capable of providing spatial resolution of less than 1 mm with a tracking efficiency close to 100% at 1 MHz counting rate. The GEM-TPC (HGB4) was tested at the FRagment Separator (FRS), with 238U beam at 850 MeV/u. A new clusterization method was developed, for the first time and used for an analysis. This method allowed to access to waveforms of each strip signal within a single trigger in an event-by-event basis. The procedures involved in this method will be shown in details.
* H.Geissel et al., The Super-FRS project at GSI, Nucl. Instr. and Meth. in Phys., vol. B204, pp. 71-85, 2003. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT004 | |
About • | Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 23 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT005 | Bunch Measurements with BPM at Low Energy Hadron Accelerators | 237 |
|
||
Beam Position Monitors (BPM) are one of the key diagnostics use in LINACs, BPMs should ensure a continuous monitoring of the beam position and energy. BPMs also give an indication of the beam transverse shape. For electron LINACs, beam longitudinal length is measured with BPMs. However, in hadron LINACs, it is performed with intrusive modules (wire scanners, beam shape monitors) This document relates the measurement of beam longitudinal length with BPMs. It is divided in two parts: first, a theoretical model of the BPM operation and the formulas driving the measurement of beam longitudinal length from BPM output signals. Second, an experimental study run at MYRRHA LINAC facility and showing good agreement between estimated values of beam longitudinal length from Tracewin simulations and BPM measurements. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT005 | |
About • | Received ※ 12 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 27 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT006 | Characterization of the Electron Beam Visualization Stations of the ThomX Accelerator | 240 |
SUSPMF083 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Research Agency under the Equipex convention ANR-10-EQPX-0051. We present an overview of the diagnostics screens stations - named SSTs - of the ThomX compact Compton source. ThomX is a compact light source based on Compton backscattering. It features a linac and a storage ring in which the electrons have an energy of 50 MeV. Each SST is composed of three screens, a YAG:Ce screen and an Optical Transition Radiation (OTR) screen for transverse measurements and a calibration target for magnification and resolution characterisation. The optical system is based on commercial lenses that have been reverse-engineered. An Arduino is used to control both the aperture and the focus remotely, while the magnification must be modified using an external motor. We report on the overall performance of the station as measured during the first steps of beam commissioning and on the optical system remote operations. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT006 | |
About • | Received ※ 20 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 17 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT009 | New Bunch-by-Bunch Filling Pattern Measuring System at ELSA | 244 |
|
||
The electron accelerator facility ELSA at the University of Bonn, Germany, can accelerate and store electrons with a final energy from 0.8GeV up to 3.2GeV. To routinely determine the filling pattern in the storage ring, a new measuring system has been developed. For hadron physics experiments the filling pattern, which is influenced by the injection from the pre-accelerating synchrotron, should be as homogeneous as possible. The new measurement system should provide a real-time measurement of the filling pattern, so that the injection can be continuously optimized. Moreover, a position measurement for each individual bunch is provided, from which the two transverse and the longitudinal tunes can be deduced. To measure the bunch-by-bunch intensity and position, the signals of the existing button-type BPMs will be digitized by fast 12-bit ADCs synchronized to the 500MHz ELSA radio frequency. The fast pre-processing and intermediate storage of the data is realized with a 500MHz clocked FPGA and transfers the data to a PC for further processing. First results of measurement system developed in-house will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT009 | |
About • | Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT010 | Status of Diamond and LGAD Based Beam-Detectors for the mCBM and CBM Experiments at GSI and FAIR | 247 |
|
||
Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871072. The Compressed Baryonic Matter (CBM) experiment* is currently under construction at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The aim of the experiment is the exploration of the Quantum Chromodynamics (QCD) phase diagram of matter at high net-baryon densities and for moderate temperatures. In this contribution a beam monitoring (BMON) system will be presented which will include a high-speed time-zero (T0) detector. The detector system must meet the requirements of the CBM time-of-flight (ToF) measurement system for proton and heavy-ion beams and should also allow for beam monitoring. The detector technology is planned to be based on chemical vapor deposition (CVD) diamond basis but also new Low Gain Avalanche Detector (LGAD) developments are evaluated. In this contribution the beam detector concept will be presented and the results of first prototype tests in the mini-CBM setup will be shown. *P. Senger, Exploring Cosmic Matter in the Laboratory - The Compressed Baryonic Matter Experiment at FAIR, Particles, vol. 2, no. 4, pp. 499-510, 2019. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT010 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT011 | Transverse Excitation and Applications for Beam Control | 251 |
SUSPMF085 | use link to see paper's listing under its alternate paper code | |
|
||
Transverse excitation of stored particle beams is required for a number of applications in accelerators. Using a time-varying, transverse electric field with a dedicated frequency spectrum, the amplitude and coherence of betatron oscillations can be increased in a controlled manner. This allows for determination of the betatron tune from turn-by-turn position measurements, control of transverse beam shapes, as well as extraction of stored beams. For studies of beam excitation, a custom signal generator is being developed. It is based on software-defined radio (SDR) which allows for configurable signal characteristics and tuneable spectra. This approach enables usage for multiple applications in beam diagnostics and control. To determine appropriate excitation spectra, studies of particle dynamics in presence of excitation are being carried out. Nonlinear fields are also incorporated to account for beam extraction conditions, which affects frequency spectra of beam motion due to detuning effects. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT011 | |
About • | Received ※ 30 May 2022 — Accepted ※ 10 June 2022 — Issue date ※ 16 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT012 | Concept of a Beam Diagnostics System for the Multi-Turn ERL Operation at the S-DALINAC | 254 |
|
||
Funding: Work supported by DFG (GRK 2128), BMBF (05H21RDRB1), the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006) and the LOEWE Research Group Nuclear Photonics. The S-DALINAC is a thrice-recirculating electron accelerator operating in cw-mode at a frequency of 3 GHz. Due to the implementation of a path-length adjustment system capable of a 360° phase shift, it is possible to operate the accelerator as an Energy-Recovery LINAC. The multi-turn ERL operation has been demonstrated in 2021. While operating the accelerator in this mode, there are two sets of bunches, the still-to-be accelerated and the already decelerated beam, with largely different absolute longitudinal coordinates in the same beamline acting effectively as a 6 GHz beam. For this mode, a non-destructive, sensitive beam diagnostics system is necessary in order to measure the position of both beams simultaneously. The status of a 6 GHz resonant cavity beam position monitor (BPM) will be given together with the results of a wire scanner measurement of the multi-turn ERL beam. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT012 | |
About • | Received ※ 02 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT013 | Comparative Study of Broadband Room Temperature THz Detectors for High and Intermediate Frequency Response | 257 |
SUSPMF086 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Scholarship from Hesse ministry of science and culture (HMWK), Germany. Room temperature terahertz (THz) detectors based on Field effect transistors (FETs) and Zero-bias Schottky diodes (SD) are prominent members for the temporal-spatial characterization of pulses down to the picosecond scale generated at particle accelerators. Comparative study of in house developed THz detectors both at higher and intermediate frequency (IF) is carried out using table top THz systems and commercially available sources. In this paper, we present high frequency and intermediate frequency (IF) response of Gallium Arsenide (GaAs) FET and Zero-bias Schottky diode THz detectors. The IF results obtained are helpful for understanding and designing of optimized IF circuit with broader bandwidth. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT013 | |
About • | Received ※ 19 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT016 | Update of the Bunch Arrival Time Monitor at ELBE | 260 |
|
||
The bunch arrival time monitor (BAM) at the radiation source ELBE has been upgraded twofold. In order to achieve a higher precision a new frontend has been designed, based on a development by DESY, that uses state of the art 50 GHz electro-optical modulators (EOMs). The frontend allows for thermal control of critical components and monitoring of system parameters. The modulated EOM signals and monitoring data are distributed to a new readout electronic. The new MicroTCA-based receiveris based on a dedicated FMC card developed at DESY that is installed on an FMC25 carrier board. The arrival time is calculated on a FPGA with low latency and can be used for machine diagnostic. The code has been adapted to enable the processing of a data stream of the continuous train of electron bunches, allowing for the implementation of a cw beam based feedback in a next step. The contribution will describe the BAM setup as well as the performance measured at the ELBE accelerator. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT016 | |
About • | Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT017 | Terahertz Sampling Rates with Photonic Time-Stretch for Electron Beam Diagnostics | 263 |
|
||
Funding: Supported by the Helmholtz Program-Oriented Funding (PoF), research program Matter and Technologies (Detector Technology and System), ANR-DFG ULTRASYNC funding program, CEMPI LABEX and Wavetech CPER. To understand the underlying complex beam diagnostic often large numbers of single-shot measurements must be acquired continuously over a long time with extremely high temporal resolution. Photonic time-stretch is a measurement method that is able to overcome speed limitations of con- ventional digitizers and enable continuous ultra-fast single- shot terahertz spectroscopy with refresh rates of trillions of consecutive frames. In this contribution, a novel ultra- fast data sampling system based on photonic time-stretch is presented and the performance is discussed. THERESA (TeraHErtz REadout SAmpling) is a data acquisition system based on the recent ZYNQ-RFSoC family. THERESA has been developed with an analog bandwidth up to 20 GHz and a sampling rate up to 90 GS/s. When combined with the photonic time-stretch setup, the system will be able to sample a THz signal with an unprecedented frame rate of 8 TS/s. Continuous acquisition for long observation times will open up new possibilities in the detection of rare events in accelerator physics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT017 | |
About • | Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT018 | Advancing to a GHz Transition Radiation Monitor for Longitudinal Charge Distribution Measurements | 267 |
|
||
Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE) In the past, longitudinal beam profiles have been measured with e.g., Feschenko monitors*, Fast Faraday Cups (FFC)** and field monitors. Feschenko monitors usually examine an average shape over several pulses and FFCs are interceptive devices by design. In this work we want to present the progress in the development of a novel GHz diffraction radiation monitor which shall be able to measure the longitudinal charge distribution of single bunches within Hadron beam LINACS non-destructively. A proof-of-concept measurement has been performed at GSI. We aim for a resolution of 50 to 100ps at beam energies of β=0.05 to 0.74. electronic field simulations were performed using CST Particle Studio to determine an optimal RF-Window, which also suits as vacuum chamber and the beam energy and angular dependencies of the diffraction radiation for different materials were analyzed. * A. V. Feschenko (2001): Methods and Instrumentation for Bunch Shape Measurements. In Proc. PAC’01, paper ROAB002 ** G. Zhu et al (2018): Rev. Sci. Instrum. issn 0034-6748, doi :10.1063/1.5027608 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT018 | |
About • | Received ※ 14 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT019 | Wakefield Studies for a Bunch Arrival-Time Monitor Concept with Rod-Shaped Pickups on a Printed Circuit Board for X-Ray Free-Electron Lasers | 271 |
|
||
Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract No. 05K19RO1. The European XFEL (EuXFEL) and other notable X-ray Free-Electron Laser facilities rely on an all-optical synchronization system with electro-optical bunch arrival-time monitors (BAM). The current BAMs were benchmarked with a resolution of 3.5 fs for nominal 250 pC bunches at the EuXFEL, including jitter of the optical reference system. The arrival-time jitter could be reduced to about 10 fs with a beam-based feedback system. For future experiments at the EuXFEL the bunch charge will be decreased to a level where the existing system’s accuracy will no longer be sufficient. In simulations a concept based on rod-shaped pickups mounted on a printed circuit board indicated its potential for such low charge applications. For the feasibility of the proposed design, its contribution to the total impedance is essential. In this work the design and an intermediate version are compared to state-of-the-art BAM regarding their wake potential. Furthermore, measures to mitigate wakefields are discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT019 | |
About • | Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 05 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT020 | Longitudinal Phase Space Diagnostics with Corrugated Structure at the European XFEL | 275 |
|
||
Characterization of the longitudinal phase space (LPS) of the electron beam after the FEL process is important for its study and tuning. At the European XFEL, a single plate corrugated structure was installed after the SASE2 undulator to measure the LPS of the electron beam. The beam passing near the plate’s corrugations creates wakefields, which induce a correlation between time and the transverse distribution of the beam. The longitudinal phase space of the beam is then analyzed on a scintillating screen monitor placed in the dispersion section. In this paper, we present the result of commissioning the corrugated structure and the first LPS measurement. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT020 | |
About • | Received ※ 12 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 21 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT021 | 5D Tomography of Electron Bunches at ARES | 279 |
SUSPMF088 | use link to see paper's listing under its alternate paper code | |
|
||
The ARES linear accelerator at DESY aims to deliver stable and well-characterized electron bunches with durations down to the sub-fs level. Such bunches are highly sought after to study the injection into novel high-gradient accelerating structures, test diagnostics devices, or perform autonomous accelerator studies. For such applications, it is advantageous to have a complete and detailed knowledge of the beam properties. Tomographic methods have shown to be a key tool to reconstruct the phase space of beams. Based on these techniques, a novel diagnostics method is being developed to resolve the full 5-dimensional phase space (x,x’,y,y’,z) of bunches including their transverse and longitudinal distributions and correlations. In simulation studies, this method shows an excellent agreement between the reconstructed and the original distribution for all five planes. Here, the 5-dimensional phase space tomography method is presented using a showcase simulation study at ARES. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT021 | |
About • | Received ※ 03 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT024 | Measuring the Coherent Synchrotron Radiation Far Field with Electro-Optical Techniques | 292 |
|
||
Funding: M. M. P. acknowledges the support by the DFG-funded Doctoral School KSETA. C. W. achnowledges funding by BMBF contract number 05K19VKD. For measuring the temporal profile of the coherent synchrotron radiation (CSR) a setup based on electro-optical spectral decoding (EOSD) will be installed as part of the sensor network at the KIT storage ring KARA (Karlsruhe Research Accelerator). The EOSD technique allows a single-shot, phase sensitive measurement of the complete spectrum of the CSR far field radiation at each turn. Therefore, the dynamics of the bunch evolution, e.g. the microbunching, can be observed in detail. Especially, in synchronized combination with the already established near-field EOSD, this method could provide deeper insights in the interplay of bunch profile and CSR generation for each individual electron bunch. For a successful implementation of the EOSD single shot setup, measurements with electro-optical sampling (EOS) are performed. With EOS the THz pulse shape is scanned over several turns by shifting the delay of laser and THz pulse. In this contribution different steps towards the installation of the EOSD far field setup are summarized. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT024 | |
About • | Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT025 | Development of an Electro-Optical Longitudinal Bunch Profile Monitor at KARA Towards a Beam Diagnostics Tool for FCC-ee | 296 |
|
||
Funding: The Future Circular Collider Innovation Study (FCCIS) project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 951754. M. R. and M. M. P. acknowledge the support by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology". C. W. achnowledges funding by BMBF contract number 05K19VKD. The Karlsruhe Research Accelerator (KARA) at KIT features an electro-optical (EO) near-field diagnostics setup to conduct turn-by-turn longitudinal bunch profile measurements in the storage ring using electro-optical spectral decoding (EOSD). Within the Future Circular Collider Innovation Study (FCCIS) an EO monitor using the same technique is being conceived to measure the longitudinal profile and center-of-charge of the bunches in the future electron-positron collider FCC-ee. This contribution provides an overview of the EO near-field diagnostics at KARA and discusses the development and its challenges towards an effective beam diagnostics concept for the FCC-ee. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT025 | |
About • | Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT026 | Beam Diagnostics for the Storage Ring of the cSTART Project at KIT | 300 |
|
||
In the framework of the compact STorage ring for Accelerator Research and Technology (cSTART) project, which will be realized at Karlsruhe Institute of Technology (KIT), a Very Large Acceptance compact Storage Ring (VLA-cSR) is planned to study the injection and the storage of 50 MeV, ultra-short (sub-ps) electron bunches from a laser plasma accelerator (LPA) and the linac-based test facility FLUTE. For such a storage ring, where a single bunch with a relatively wide range of bunch charge (1 pC - 1000 pC ) and energy spread (10’4 - 10’2) will circulate at a relatively high revolution frequency (7 MHz), the choice of beam diagnostics is very delicate. In this paper, we would like to discuss several beam diagnostics options for the storage ring and to briefly report on several tests that have been or are planned to be realized in our existing facilities. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT026 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT027 | Transverse and Longitudinal Profile Measurements at the KARA Booster Synchrotron | 304 |
|
||
In the booster synchrotron of the Karlsruhe Research Accelerator (KARA), the beam is injected from the microtron at 53 MeV and ramped up to 500 MeV. Though the injected beam current from the microtron to the booster seems good, the injection efficiency into the booster is currently low due to various effects. Consequently, an upgrade of the whole beam diagnostics system is taking place in the booster, in order to improve the injection efficiency through understanding the loss mechanisms and the behavior of bunches. Among these diagnostics tools are beam loss monitors, a transverse profile monitor and a longitudinal profile monitor. In this paper, we will describe the setups used for bunch profile measurements in both transverse and longitudinal planes and report on first data analysis results. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT027 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT028 | Beam Diagnostics and Instrumentation for MESA | 307 |
|
||
Funding: Work supported by PRISMA and the German federal state of Rheinland-Pfalz For the new Mainz Energy recovering Superconducting Accelerator (MESA) a wide range of beam currents is going to be used during machine optimization and for the physics experiments. To be able to monitor beam parameters like beam current, phases and beam positions several different kinds of beam instrumentation is foreseen. Some components have already been tested at the Mainz Microtron (MAMI) and others have been used at the MELBA test accelerator. In this paper we will present the current status of the instrumentation. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT028 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT029 | Longitudinal Phase Space Benchmarking for PITZ Bunch Compressor | 310 |
|
||
The longitudinal phase space characteristics of space-charge dominated electron beams are keys to achieving bunch compression for the accelerator-based THz source at the Photo Injector Test facility at DESY in Zeuthen (PITZ). Such a THz source is proposed as a prototype for an accelerator-based THz source for pump-probe experiments at the European XFEL. A start-to-end simulation has suggested the settings of the phase of booster linear accelerator manipulating longitudinal beam characteristics to optimize the performance of the THz FEL. Although beam diagnostics after compression at PITZ are limited, the longitudinal beam characteristics as a function of the booster phase have been measured and compared with the corresponding simulations. The benchmark involves measurements of longitudinal phase space distribution for bunch charges up to 2 nC. The measurement technique assigned uses 50-um slits to achieve higher momentum and time resolution (1.8 keV/c and 0.5 ps, respectively). | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT029 | |
About • | Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 18 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT031 | Renovation of the SR Beam Profile Monitors with Novel Polycrystalline Diamond Mirrors at the SuperKEKB Accelerator | 313 |
|
||
SR beam profile monitors are fundamental to perform the stable beam operation of SuperKEKB. To suppress thermal deformation of SR extraction mirrors–a long-standing issue in SR monitors–, we developed platinum coated diamond mirrors in 2019. The diamond mirrors are made with optical-quality polycrystal-diamond-substrate with extremely large thermal conductivity, and have a size of 20 mm (W) x 30 mm (H) x 2 mm (D). Surface flatness better than λ/5 was observed in an optical testing with a laser interferometer. The diamond mirrors have been installed in HER and LER in 2020 summer and 2021 summer, respectively. Through irradiation for an year at the beam current greater than 800 mA, no significant deformation of the diamond mirrors has been observed. In this talk, we will discuss the design, construction, and optical testing of the polycrystal diamond mirrors. Also beam measurements performed using an interferometer, a coronagraph, a streak camera, and a fast gate camera will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT031 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT032 | Improvement of Matching Circuit for J-PARC Main Ring Injection Kicker Magnet | 316 |
|
||
In this paper, present status of improvements of the impedance matching circuit for the J-PARC main ring injection kicker magnet to achieve 1.3MW beam operation planed after 2022 is described. In order to reduce the temperature-rise of resistors under the higher repetition rate pulse excitation, number of paralleled resistors was doubled and volume of each resistor was enlarged 2.6 times. Ceramic-made beads with diameter of 3 mm were filled in the cylinder of the resistor to increase the heat conductivity. An aluminum-made water-cooled heat sink was attached to the resistors directly and an air-cooling fan was mounted to the side of the box containing the resistors. All resistors and their support structure have been replaced in March 2022. Temperature-rise of resistors during continuous pulse excitation was measured by commercial thermo camera and compared with numerical calculations. In addition, predictions about the beam induced heating of the resistors are discussed. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT032 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 26 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT033 | Study of Cherenkov Diffraction Radiation for Beam Diagnostics | 320 |
|
||
Cherenkov diffraction radiation (ChDR) has been paid attention to non-beam-destructive diagnostics in these years. However, the physical understanding of ChDR is not well satisfied yet because of precise experimental observation is not much easier than one expects. Although we do not deny the Cherenkov radiation and ChDR are fully explained by the classical electromagnetics, we encounter a couple of difficulties in actual applications. For instance, the theory is usually established for the far-field observation, in spite of that the radiation is often observed near-field in the realistic beam diagnostic tools employing photon measurements. In addition, the theory, as a matter of course, includes some assumptions which is sometimes not valid for the specific experiments. We have carried out experiments for observation of coherent ChDR in THz frequency region by a using 100 femtosecond electron beam supplied by the t-ACTS accelerator at Tohoku University. In a flame work of this study an FDTD simulation in the large space has been developed as well. In this presentation, we will show the experimental results comparing with both the theory and the simulation. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT033 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT034 | Surrogate-Based Bayesian Inference of Transverse Beam Distribution for Non-Stationary Accelerator Systems | 324 |
|
||
Constraints on the beam diagnostics available in real-time and time-varying beam source conditions make it difficult to provide users with high-quality beams for long periods without interrupting experiments. Although surrogate model-based inference is useful for inferring the unmeasurable, the system states can be incorrectly inferred due to manufacturing errors and neglected higher-order effects when creating the surrogate model. In this paper, we propose to adaptively assimilate the surrogate model for reconstructing the transverse beam distribution with uncertainty and underspecification using a sequential Monte Carlo from the measurements of quadrant beam loss monitors. The proposed method enables sample-efficient and training-free inference and control of the time-varying transverse beam distribution. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT034 | |
About • | Received ※ 19 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT037 | Beam Measurement and Application of the Metal Vapor Vacuum Arc Ion Source at KOMAC | 328 |
|
||
Funding: This work has been supported through KOMAC operation fund of KAERI by MSIT (Ministry of Science and ICT) and the NRF (National Research Foundation) of Korea grant fund the Korea government (MSIT). The metal ion beam facility is developed based on the MEVVA* ion source at the KOMAC**. The MEVVA ion source has advantage that it can be extract almost metal ion species as well as high current ion beam. After the installation, we measured beam properties such as peak beam current, beam profile depending on the operation condition. The average charge state is measured in order to estimate the total dose. We evaluate the beam stability through the long-term beam extraction, and the measured the cathode erosion rate too. In addition, as one of the application fields, we irradiate the metal beam on the cathode of the fuel cell and measured the performance. In this paper, the beam measurement results, are summarized and fuel cell performances after metal beam irradiation are discussed. *Korea Multi-purpose of Accelerator Complex **Metal Vapor Vacuum Arc |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT037 | |
About • | Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT038 | Development of Button BPM Electronics for the Bunch by Bunch Feedback System of 4GSR | 332 |
|
||
With the advent of the fourth-generation storage ring, the size of the vertical emittance of the electron beam is expected to be about 100 times smaller than that of the existing generation. In line with the development of accelerator performance, the resolution of the beam position monitor(BPM) should also be further improved, and it can be provide a more stable and uniform beam to end station users through improved bunch by bunch(BbB) feedback system compared to a system called turn by turn or fast feedback. A developed BPM electronics for BbB feedback will be installed in Bessy II booster ring at HZB Research Institute in Germany. BbB feedback BPM electronics with an improved three button BPMs will be used to measure beam position resolution and calculate an information for BbB feedback and then it will apply to the BbB feedback system. In this proceeding, we will describe the development of an upgraded beam position monitor and BPM electronics for BbB feedback. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT038 | |
About • | Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT041 | Artificial Intelligence-Assisted Beam Distribution Imaging Using a Single Multimode Fiber at CERN | 339 |
|
||
In the framework of developing radiation tolerant imaging detectors for transverse beam diagnostics, the use of machine learning powered imaging using optical fibers is explored for the first time at CERN. This paper presents the pioneering work of using neural networks to reconstruct the scintillating screen beam image transported from a harsh radioactive environment over a single, large-core, multimode, optical fiber. Profiting from generative modeling used in image-to-image translation, conditional adversarial networks have been trained to translate the output plane of the fiber, imaged on a CMOS camera, into the beam image imprinted on the scintillating screen. Theoretical aspects, covering the development of the dataset via geometric optics simulations, modeling the image propagation in a simplified model of an optical fiber, and its use for training the network are discussed. Finally, the experimental setups, both in the laboratory and at the CLEAR facility at CERN, used to validate the technique and evaluate its potential are highlighted. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT041 | |
About • | Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 19 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT042 | Recent AWAKE Diagnostics Development and Operational Results | 343 |
|
||
The Advanced Wakefield Experiment (AWAKE) at CERN investigates the Plasma-Wakefield acceleration of electrons driven by a relativistic proton bunch. After successfully demonstrating the acceleration process in the AWAKE Run 1, the experiment has now started the Run 2. The AWAKE Run 2 consists of several experimental periods that aim to demonstrate the feasibility of the AWAKE concept beyond the acceleration experiment, showing its feasibility as accelerator for particle physics application. As part of these developments, a dramatic effort in improving the AWAKE instrumentation is sustained. This contribution reports on the current developments of the instrumentation pool upgrade, including the digital camera system for transverse beam profile measurement, beam halo measurement and the spectrometer upgrade studies. The studies on the development of high-frequency beam position monitors are also described. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT042 | |
About • | Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT043 | Recent Developments in Longitudinal Phase Space Tomography | 347 |
|
||
Longitudinal phase space tomography has been a mainstay of longitudinal beam diagnostics in most of the CERN synchrotrons for over two decades. Originally, the reconstructions were performed by a highly optimised Fortran implementation. To facilitate increased flexibility, and leveraging the significant increase in computing power since the original development, a new version of the reconstruction code has been developed. This implements an object-oriented Python API, with the computationally heavy calculations in C++ for improved performance. The Python/C++ implementation is designed to be highly modular, enabling new and diverse use cases. For example, the macro-particle tracking for the tomography can now be performed externally, or a single set of tracked particles can be reused for multiple reconstructions. This paper summarises the features of the new implementation, and some of the key applications that have been enabled as a result. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT043 | |
About • | Received ※ 30 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT045 | Beam Loss Localisation with an Optical Beam Loss Monitor in the CLEAR Facility at CERN | 351 |
SUSPMF091 | use link to see paper's listing under its alternate paper code | |
|
||
A prototype of a Beam Loss Monitor based on the detection of Cherenkov light in optical fibres is being developed to measure beam losses in the CERN Super Proton Synchrotron. Several testing campaigns have been planned to benchmark the simulations of the system and test the electronics in the CLEAR facility at CERN. During the first campaigns, the emission of Cherenkov light inside optical fibres and the photodetector characterisation were studied. Fibre-based Beam Loss monitors continuously monitor beam losses over long distances. The localisation of the beam loss could be calculated from the timing of the signals generated by the photosensors coupled at both ends of the optical fibre. The experimental results of an optical fibre Beam Loss Monitor installed in the CLEAR facility are reported in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT045 | |
About • | Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 24 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT046 | Linearity and Response Time of the LHC Diamond Beam Loss Monitors in the CLEAR Beam Test Facility at CERN | 355 |
SUSPMF092 | use link to see paper's listing under its alternate paper code | |
|
||
Chemical Vapour Deposition (CVD) diamond detectors have been tested during the Run 2 operation period (2015-2018) as fast beam loss monitors for the Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) at CERN. However, the lack of raw data recorded during this operation period restrains our ability to perform a deep analysis of their signals. For this reason, a test campaign was carried out at the CLEAR beam test facility at CERN with the aim of studying the linearity and response time of the diamond detectors against losses from electron beams of different intensities. The signal build-up from multi-bunched electron beams was also analyzed. The conditions and procedures of the test campaign are explained, as well as the most significant results obtained. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT046 | |
About • | Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT047 | Experimental Demonstration of Machine Learning Application in LHC Optics Commissioning | 359 |
|
||
Recently, we conducted successful studies on the suitability of machine learning (ML) methods for optics measurements and corrections, incorporating novel ML-based methods for local optics corrections and reconstruction of optics functions. After performing extensive verifications on simulations and past measurement data, the newly developed techniques became operational in the LHC commissioning 2022. We present the experimental results obtained with the ML-based methods and discuss future improvements. Besides, we also report on improving the Beam Position Monitor (BPM) diagnostics with the help of the anomaly detection technique capable to identify malfunctioning BPMs along with their possible fault causes. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT047 | |
About • | Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT048 | Design of a Prototype Gas Jet Profile Monitor for Installation Into the Large Hadron Collider at CERN | 363 |
|
||
The Beam-Gas Curtain or BGC is the baseline instrument for monitoring the concentricity of the LHC proton beam with a hollow electron beam for the hollow e-lens (HEL) beam halo suppression device which is part of the High-Luminosity LHC upgrade. The proof-of-principles experiments of this gas-jet monitor have now been developed into a prototype instrument which has been built for integration into the LHC ring and is now under phased installation for operation in the upcoming LHC run. This paper describes the challenges overcome to produce a gas-jet fluorescence monitor for the ultra-high vacuum accelerator environment. It also presents preliminary results from the installation of the instrument at CERN. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT048 | |
About • | Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT049 | Study on Energy Spectrum Measurement of Electron Beam for Producing MIR-FEL at PBP-CMU Electron Linac Laboratory | 367 |
SUSPMF093 | use link to see paper's listing under its alternate paper code | |
|
||
At the PBP-CMU Electron Linac Laboratory (PCELL), we aim to produce a mid-infrared free-electron laser (MIR-FEL) for pump-probe experiments in the future. The electron beam is generated from a thermionic cathode radio-frequency (RF) gun with a 1.5-cell cavity before going to an alpha magnet. In this section, some part of the beam is filtered out by using energy slits. The selected part of the beam is then further accelerated by an RF linear accelerator (linac) to get higher energy. This work focuses on the measurement of energy spectrum of electron beam for producing mid-infrared free-electron laser (MIR-FEL). Since our bunch compressor (BC) for the MIR-FEL beamline is an achromat system, the longitudinal distributions of electron beam at the entrance and the exit of the BC are almost the same. Thus, we can measure the longitidinal properties of the beam before it travels to the BC. By using a dipole magnet and a Faraday cup with a slit, we can measure energy spectrum of electron beam before entering the BC. In this study, the ASTRA code is used to investigate the properties of electron beam as well as to design the measuring system. The design results including systematic error of the measuring system are presented and discussed in this contribution. The results from this work can be used as the guideline for the measuring system construction as well as the beam operation. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT049 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT050 | Systematic Study of Electron Beam Measuring Systems at the PBP-CMU Electron Linac Laboratory | 371 |
SUSPMF094 | use link to see paper's listing under its alternate paper code | |
|
||
The linear accelerator system at the PBP-CMU Electron Linac Laboratory (PCELL) is used to produce electron beam with suitable properties for generating coherent teragertz (THz) radiation and mid-infrared free-electron laser (MIR FEL). Optimization of machine parameters to produce short electron bunches with low energy spread and low transverse emittance was focused in this study. We conducted ASTRA simulations including three-dimentional (3D) space charge algorithm and 3D field distributions for radio-frequency (RF) electron gun and all magnets to develop measuring systems. Electron beam energy and energy spread were investigated downstream the RF gun and the RF linac using an alpha magnet and a dipole spectrometer, respectively. The transverse beam emittance was studied using the quadrupole scan technique. By filtering proper portion of electrons before entering the linac, the beam with average energy of 20 MeV and energy spread of 0.1-1% can be achieved for a bunch charge of 100 pC. The systematic error is less than 10% for measuring average energy and energy spread while it is less than 31% for measuring transverse emittance when placing the screen of at least 1.0 m behind the scanning quadrupole magnet. The results of this study were used to develop the measuring setups in our system. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT050 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT051 | Optical Fiber Based Beam Loss Monitor for SPS Machine | 374 |
|
||
At the Siam Photon Source (SPS) beam loss monitors based on PIN diode have been used. The existing system allow beam loss detection very locally at the monitor position close to the vacuum chamber. For optical fiber, Cherenkov radiation can be detected when a lost particle travel in the fiber. Thus optical fiber based loss monitor with sufficient length can cover parts of the machine conveniently. Fast beam loss event can be detected with more accurate position. In this paper, the design and result of the optical fiber based beam loss monitor system at SPS machine are discussed. The system will be a prototype for the new 3 GeV machine SPS-II. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT051 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT052 | Beam-Based Alignment for LCLS-II CuS Linac-to-Undulator Quadrupoles | 377 |
|
||
An advanced method for beam-based alignment that can simultaneously determine the quadrupole centers of multiple magnets has been applied to the LCLS-II CuS linac-to-undulator (LTU) section. The new method modulates the strengths of multiple quadrupoles and monitor the induced trajectory shift. Measurements are repeated with the beam trajectory through the quadrupoles steered with upstream correctors, from which the quadrupole centers can be obtained. Steering of the trajectory to minimize the induced trajectory shift is also done for finding the quadrupole centers. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT052 | |
About • | Received ※ 27 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT053 | A Beam Position Monitor for Electron Bunch Detection in the Presence of a More Intense Proton Bunch for the AWAKE Experiment | 381 |
SUSPMF095 | use link to see paper's listing under its alternate paper code | |
|
||
The Advanced Proton Driven Plasma Wakefield Experiment (AWAKE) at CERN uses 6 cm long proton bunches extracted from the Super Proton Synchrotron (SPS) at 400 GeV beam energy to drive high gradient plasma wakefields for the acceleration of electron bunches to 2 GeV within a 10 m length. Knowledge and control of the position of both copropagating beams is crucial for the operation of the experiment. Whilst the current electron beam position monitoring system at AWAKE can be used in the absence of the proton beam, the proton bunch signal dominates when both particle bunches are present simultaneously. A new technique based on the generation of Cherenkov diffraction radiation (ChDR) in a dielectric material placed in close proximity to the particle beam has been designed to exploit the large bunch length difference of the particle beams at AWAKE, 200 ps for protons versus a few ps for electrons, such that the electron signal dominates. Hence, this technique would allow for the position measurement of a short electron bunch in the presence of a more intense but longer proton bunch. The design considerations, numerical analysis and plans for tests at the CERN Linear Electron Accelerator for Research (CLEAR) facility are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT053 | |
About • | Received ※ 20 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 17 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT054 | A Modified Nomarski Interferometer to Study Supersonic Gas Jet Density Profiles | 385 |
|
||
Funding: This work is supported by the AWAKE-UK phase II project grant No. ST/T001941/1, the STFC Cockcroft core grant No. ST/G008248/1 and the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1. Gas jet-based non-invasive beam profile monitors, such as those developed for the high luminosity Large Hadron Collider (HL-LHC) upgrade, require accurate, high resolution methods to characterise the supersonic gas jet density profile. This paper proposes a modified Nomarski interferometer to non-invasively study the behaviour of these jets, with nozzle diameters of 1 mm or less in diameter. It discusses the initial design and results, alongside plans for future improvements. Developing systems such as this which can image on such a small scale allows for improved monitoring of supersonic gas jets used in several areas of accelerator science, thus allowing for improvements in the accuracy of experiments they are utilised in. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT054 | |
About • | Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT055 | A Gas Jet Beam Profile Monitor for Beam Halo Measurement | 389 |
|
||
Funding: This work was supported by the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1 and the STFC Cockcroft Institute core grant No. ST/G008248/1. The gas jet beam profile monitor is a non-invasive beam monitor that is currently being commissioned at Cockcroft Institute. It utilises a supersonic gas curtain which transverses the beam at an angle of 45 degrees and measures beam-induced ionisation interactions of the gas to produce a 2D transverse beam profile image. This paper builds upon previously used single-slit skimmers and improves their ability to form the gas jet into a desired distribution for imaging beam halo. A skimmer device removes off-momentum gas particles and forms the jet into a dense thin curtain, suitable for transverse imaging of the beam. The use of a novel double-slit skimmer is shown to provide a mask-like void of gas over the beam core, increasing the relative intensity of the halo interactions for measurement. Such a non-invasive monitor would be beneficial to storage rings by providing real time beam characteristic measurements without affecting the beam. More specifically, beam halo behaviour is a key characteristic associated with beam losses within storage rings. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT055 | |
About • | Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 26 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT056 | Commissioning of a Gas Jet Beam Profile Monitor for EBTS and LHC | 393 |
|
||
Funding: This work is supported by the HL-LHC-UK II project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1. A gas jet beam profile monitor was designed for measuring the electron beam at the electron beam test stand (EBTS) for the Hollow electron lens (HEL) and the proton beam in the large hadron collider (LHC). It is partially installed in the LHC during the second long shutdown. The current monitor is tailored to the accelerator environment including vacuum, geometry, and magnetic field for both the EBTS and the LHC. It features a compact design, a higher gas jet density, and a wider curtain size for a better integration time and a larger detecting range. In this contribution, the commissioning of this monitor at the Cockcroft Institute will be discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT056 | |
About • | Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT057 | Updates in Efforts to Data Science Enabled MeV Ultrafast Electron Diffraction System | 397 |
|
||
Funding: Work supported by DOEs EPSCoR award DE-SC0021365, used resources of the Brookhaven National Laboratory’s Accelerator Test Facility and of the Argonne Leadership Computing Facility. MeV ultrafast electron diffraction (MUED) is a pump-probe characterization technique to study ultrafast phenomena in materials with high temporal and spatial resolution. This complex instrument can be advanced into a turn-key, high-throughput tool with the aid of machine learning (ML) mechanisms and high-performance computing. The MUED instrument at the Accelerator Test Facility in Brookhaven National Laboratory was employed to test different ML approaches for both data analysis and control. We characterized different materials using MUED, mainly polycrystalline gold and single crystal Ta2NiS5. Diffraction patterns were acquired in single shot mode and convolutional neural network autoenconder models were evaluated for noise reduction and the reconstruction error was studied to identify anomalous diffraction patterns. Electron beam energy jitter was analyzed from single shot diffraction patterns to be used as a novel diagnostic tool. The MUED beamline was also simulated using VSim to construct a surrogate model for control of beam shape and energy. Progress towards ML-based controls leveraging off Argonne Leadership Computing Facility resources will also be presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT057 | |
About • | Received ※ 02 July 2022 — Accepted ※ 26 June 2022 — Issue date ※ 08 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT058 | Machine Learning Training for HOM Reduction in a TESLA-Type Cryomodule at FAST | 400 |
SUSPMF099 | use link to see paper's listing under its alternate paper code | |
|
||
Low emittance electron beams are of high importance at facilities like the Linac Coherent Light Source II (LCLS-II) at SLAC. Emittance dilution effects due to off-axis beam transport for a TESLA-type cryomodule (CM) have been shown at the Fermilab Accelerator Science and Technology (FAST) facility. The results showed the correlation between the electron beam-induced cavity high-order modes (HOMs) and the Beam Position Monitor (BPM) measurements downstream the CM. Mitigation of emittance dilution can be achieved by reducing the HOM signals. Here, we present a couple of Neural Networks (NN) for bunch-by-bunch mean prediction and standard deviation prediction for BPMs located downstream the CM. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT058 | |
About • | Received ※ 15 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 26 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT062 | Foil Focusing Effect in Pepper-Pot Measurements in Intense Electron Beams | 404 |
|
||
Funding: Work supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy (Contract No. 89233218CNA000001). Thin conducting foils, such as pepper-pot masks, perpendicular to an oncoming intense electron beam acts like an imperfect axisymmetric lens. The beamlets distribution from a pepper-pot mask varies based on if the mask hole radius is smaller or larger than the beams Debye length. Correcting for focusing effect is necessary for measuring transverse emittance with pepper-pot technique for intense electron beams. The Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Axis-I produces a 20 MeV, 2 kA, 80 ns FWHM electron beam for flash radiography. In this paper, we explore the effect of foil focusing due to various pepper-pot masks at DARHT Axis-I injector region from a 55 mm velvet cathode. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT062 | |
About • | Received ※ 01 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT063 | Reconstruction of Beam Parameters from Betatron Radiation Using Maximum Likelihood Estimation and Machine Learning | 407 |
|
||
Funding: US Department of Energy, Division of High Energy Physics, Contract No. DE-SC0009914 STFC Liver-pool Centre for Doctoral Training on Data Intensive Science, grant agreement ST/P006752/1 Betatron radiation that arises during plasma wakefield acceleration can be measured by a UCLA-built Compton spectrometer, which records the energy and angular position of incoming photons. Because information about the properties of the beam is encoded in the betatron radiation, measurements of the radiation can be used to reconstruct beam parameters. One method of extracting information about beam parameters from measurements of radiation is maximum likelihood estimation (MLE), a statistical technique which is used to determine unknown parameters from a distribution of observed data. In addition, machine learning methods, which are increasingly being implemented for different fields of beam diagnostics, can also be applied. We assess the ability of both MLE and other machine learning methods to accurately extract beam parameters from measurements. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT063 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 26 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT066 | Gas Sheet Diagnostics Using Particle in Cell Code | 410 |
|
||
Funding: This work was supported by the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1 and DE-SC0019717. When intense particle beam propagates in dense plasma or gas, ionization can yield valuable information on the drive beam properties. Impact ionization and tunnel ionization are the two ionization regimes that must be accounted for varying beam properties. Due to these ionization mechanisms, new plasma electrons are generated causing different instabilities, dependent on the dominant ionization process considered. In order to accomplish the ambitious experimental goals of sophisticated beam diagnostics using ionization imaging, careful studies on the different ionization regimes, and the cross-over periods, required. Here we will discuss the impact ionization using fully parallel PIC code OSIRIS. We focus on understanding the gas sheet ionization diagnostics for characterizing high intensity charged particle beams. We study the interaction of neutral gas with an electron beam and varying density. We will also investigate the principle of detecting photon emission, rather than direct primary ion imaging, from the ionization induced in the interaction between the gas jet and charged particle beams. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT066 | |
About • | Received ※ 07 June 2022 — Revised ※ 19 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 26 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT067 | Electron Beam Phase Space Reconstruction From a Gas Sheet Diagnostic | 414 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0019717. Next generation particle accelerators craft increasingly high brightness beams to achieve physics goals for applications ranging from colliders to free electron lasers to studies of nonperturbative QED. Such rigorous requirements on total charge and shape introduce diagnostic challenges for effectively measuring bunch parameters prior to or at interaction points. We report on the simulation and training of a non-destructive beam diagnostic capable of characterizing high intensity charged particle beams. The diagnostic consists of a tailored neutral gas curtain, electrostatic microscope, and high sensitivity camera. An incident electron beam ionizes the gas curtain, while the electrostatic microscope transports generated ions to an imaging screen. Simulations of the ionization and transport process are performed using the Warp code. Then, a neural network is trained to provide accurate estimates of the initial electron beam parameters. We present initial results for a range of beam and gas curtain parameters and comment on extensibility to other beam intensity regimes. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT067 | |
About • | Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 10 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOPT069 | A Data-Driven Beam Trajectory Monitoring at the European XFEL | 418 |
|
||
Funding: This work was supported by HamburgX grant LFF-HHX-03 to the Center for Data and Computing in Natural Sciences (CDCS) from the Hamburg Ministry of Science, Research, Equalities and Districts. Interpretation of data from beam position monitors is a crucial part of the reliable operation of European XFEL. The interpretation of beam positions is often handled by a physical model, which can be prone to modeling errors or can lead to the high complexity of the computational model. In this paper, we show two data-driven approaches that provide insights into the operation of the SASE beamlines at European XFEL. We handle the analysis as a data-driven problem, separate it from physical peculiarities and experiment with available data based only on our empirical evidence and the data. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT069 | |
About • | Received ※ 06 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOTK003 | Absorbed Dose Characteristics for Irradiation Experiments at AREAL 5 MeV Electron Linac | 429 |
|
||
Existing electron photogun facility at the CANDLE SRI currently can provide electron beam with the energy up to 5 MeV. The beam is being used as an irradiation source in the number of material science and life science experiments. Performed beam particle tracking simulations along with intensive application of the beam diagnostic instruments (bending magnet, YAG stations, Faraday cups) allow control of the experimental samples’ irradiation parameters, particularly exposure times for given dose as well as absorbed dose spatial distribution. Direct application of the electron beam for the irradiation experiments allows achievement of high absorbed dose. For the calculation of the irradiation parameters of the experimental samples’ particle transport simulation results should be combined with the beam current measurements by Faraday Cup (FC). Dose measurements and the comparison with numerical simulations using various initial parameters (Transverse size, divergence and energy spread) permit to pin down their actual values. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK003 | |
About • | Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOTK067 | High-Charge Transmission Diagnostics for Beam-Driven RF Structures | 618 |
|
||
Funding: U.S. Department of Energy Office of Science Contract No. DE-AC02-06CH11357. The Argonne Wakefield Accelerator group (AWA) has been using high Charge bunch-trains (>450 nC) for structure wakefield RF power generation and high power testing (100 s of MW) for many years. These experiments involve fast beam-tuning for high charge transmission through small aperture wakefield structures over a large range of charge levels. The success of these experiments depends on real-time, non-destructive, fast charge measurements with devices that are robust in the high-charge and high-powered RF environment. AWA uses Bergoz Integrating Charge Transformers (ICT) which are ideal for these critical charge measurements. The devices used, the method developed and its application are detailed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK067 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOMS032 | Compact-Two-Octave-Spanning Perpendicular Kicker of MeV Electrons Based on a Cubic Magnet Dipole Array | 706 |
|
||
Funding: This work has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant AXSIS (609920). New compact particle acceleration structures, including but not limited to plasma, THz and direct laser driven accelerators, have in common that they cover a wide energy range of potential final energies and often show a large energy spread. Moreover, they may initially have a rather large emittance. To analyze the energy range of a single shot and/or to deflect the beam to safely dump the electrons away from an end-station requires an electron kicker covering a large energy range. Here, we present a magnetic dipole structure based on a 2D Halbach array. For the current experimental test accelerator in AXSIS, an electron beam in the energy range from 4 to 20 MeV is deflected by 90 degree and energetically dispersed. In direct contrast to a simple magnetic dipole, an array of cubic magnet blocks with tailored magnetization directions allows a focusing of the beam for both longitudinal and transverse directions at 90 degree bend. A generic algorithm optimizes the magnetic field array to the predefined deflection angle and divergence. The modular array structure, in combination with the algorithm enables a simple exchange of magnets to adapt for different beam parameters. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS032 | |
About • | Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUIXGD1 |
Accurate and Confident Prediction of Electron Beam Longitudinal Properties Using Spectral Virtual Diagnostics | |
|
||
Longitudinal phase space measurement is one of the key diagnostics in FEL machines. In this work it is shown as the application of machine learning based virtual diagnostics can provide undirect information on the longitudinal phase space of the beam in a non intercepting way and, in combination with standard longitudinal diagnostics methods, helps overcoming resolution limitations and increasing the accuracy of the measured data. | ||
Slides TUIXGD1 [13.278 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOXGD1 | Design and Construction of Optical System of the Coronagraph for Beam Halo Observation in the SuperKEKB | 769 |
|
||
For the observation of beam halo, the coronagraph is designed and constructed in the SuperKEKB. The coronagraph has three stages of optical systems, objective system, re-diffraction system and relay system. Since the SR monitor of SuperKEKB has a long optical path (60 m), we need an objective system with long focal length. The Aperture limit is determined by the diamond mirror which is set in 23.6 m from the source point. Therefore, we must assign this aperture for the entrance pupil of the objective system. For satisfying these conditions, we design a reflective telephoto system based on the Gregorian telescope for the objective system. The focal length is designed to 7028 mm. and front principal point position is designed to the position of diamond mirror. The result of construction, the performance of the objective system has a diffraction limited quality. The re-diffraction system and relay system are also designed based on Kepler type telescope. The result of optical testing using the beam in the HER, we achieved a contrast of 6 order magnitude. Some early result for the observation of beam halo in the HER will also present in this presentation. | ||
Slides TUOXGD1 [4.345 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXGD1 | |
About • | Received ※ 09 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOXGD3 | 6D Phase Space Diagnostics Based on Adaptively Tuned Physics-Informed Generative Convolutional Neural Networks | 776 |
|
||
Funding: US Department of Energy, DOE Office of Science Graduate Student Research (SCGSR) contract numbers 89233218CNA000001 and DE-AC02-05CH11231 and by the NSF under Grant No. PHY-1549132. A physics-informed generative convolutional neural network (CNN)-based 6D phase space diagnostic is presented which generates all 15 unique 2D projections (x,y), (x,y’),…, (z,E) of a charged particle beam’s 6D phase space (x,y,z,x’,y’,E)*. The CNN is trained by supervised learning over a wide range of input beam distributions, accelerator parameters, and the associated 6D beam phase spaces at multiple accelerator locations. The CNN is applied in an un-supervised adaptive manner without knowledge of the input beam distribution or accelerator parameters and is robust to their unknown time variation. Adaptive feedback automatically tunes the low-dimensional latent space of the encoder-decoder CNN to predict the 6D phase space based only on 2D (z,E) longitudinal phase space measurements from a device such as a transverse deflecting RF cavity (TCAV). This method has the potential to provide diagnostics beyond the existing state of the art at many accelerator facilities. Studies are presented for two very different accelerators: the 5-meter-long ultra-fast electron diffraction (UED) HiRES compact accelerator at LBNL and the kilometer long plasma wakefield accelerator FACET-II at SLAC. *A. Scheinker. "Adaptive machine learning for time-varying systems: low dimensional latent space tuning." Journal of Instrumentation 16.10, 2021: P10008. https://doi.org/10.1088/1748-0221/16/10/P10008 |
||
Slides TUOXGD3 [3.112 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXGD3 | |
About • | Received ※ 21 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THOYGD1 | Experimental Verification of Several Theoretical Models for ChDR Description | 2420 |
|
||
In recent years the potential of using Cherenkov Diffraction Radiation (ChDR) as a tool for non-invasive beam diagnostics has been thoroughly investigated. Although several theoretical models of ChDR have been developed, differences in their assumptions result in inconsistent predictions. The experimental verification is therefore needed in order to fully understand ranges of validity of available models. In this contribution we present a detailed theoretical study of the radiation yield as a function of the beam-radiator distance. Following identification of beam parameters and frequency range for which differences between the model predictions are most prominent, we compare theoretical estimates with the results of a dedicated experiment. | ||
Slides THOYGD1 [0.838 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOYGD1 | |
About • | Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 19 June 2022 — Issue date ※ 27 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THOYGD2 |
Experimental Slice Emittance Reduction at PITZ Using Laser Pulse Shaping | |
|
||
Free-electron lasers in the X-ray regime require a high-brightness electron beam, i.e. an electron beam with high current and low transverse emittance. At the Photo Injector Test facility at DESY in Zeuthen (PITZ) high-brightness electron sources are optimized for the use at FLASH and European XFEL. A low transverse emittance of the electron beam’s central part, which is assumed to be the lasing slices, is of particular interest for the efficient FEL operation. Over the past years a slice emittance measurement scheme has been developed at PITZ which employs an rf deflector and additional quadrupole magnets along the beamline to the standard measurement procedure for the projected emittance (single-slit scan). It allows measuring the slice emittance in a high-brightness photo injector. Transversely flat-top shaped laser pulses of different temporal distributions (Gaussian and flat-top) have been used to emit electrons, as well as transversely-truncated Gaussian laser pulses with temporal Gaussian shape. The paper shows that the lowest slice emittance in the injector is reached with a temporal flattop shape, or when using a transversely-truncated Gaussian shape. | ||
Slides THOYGD2 [2.045 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THOYGD3 |
Online Measurement of Bunch Lengths and Fill-pattern in the PLS-II Storage Ring Using a Fast Photodiode | |
|
||
Providing bunch lengths and a filling pattern of the bunch train in real-time is one of the important challenges in beam instrumentation of the 3rd generation light source. In particular, the time length and intensity information of the synchrotron light is useful to beamlines and their users who perform time-resolved experiments. We developed an online monitoring system that can measure bunch lengths and a filling pattern simultaneously by directly observing the synchrotron radiation with a picosecond-resolution photodiode and high input analog bandwidth digitizer. We adopted the Gaussian deconvolution method to restore the original waveform of synchrotron radiation using the system impulse response function of 29 ps in RMS which was obtained from a 100 fs length laser pulse experiment. In this paper, we present the experimental setup and signal processing method in detail as well as the online measurement results of the bunch length and filling pattern using the fast photodiode in the PLS-II. | ||
Slides THOYGD3 [3.611 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FROXGD1 | A Method for Obtaining 3D Charge Density Distribution of a Self-Modulated Proton Bunch | 3118 |
|
||
The Advanced Wakefield Experiment (AWAKE) at CERN is the first plasma wakefield accelerator experiment to use a proton bunch as driver. The long bunch undergoes seeded self-modulation (SSM) in a 10 m-long plasma. SSM transforms the bunch into a train of short micro-bunches that resonantly drive high-amplitude wakefields. We use optical transition radiation (OTR) and a streak camera to obtain time-resolved images of the bunch transverse charge density distribution in a given plane. In this paper we present a method to obtain 3D images of the bunch by scanning the OTR across the entrance slit of the streak camera. Reconstruction of the 3D distribution is possible because with seeding self-modulation is reproducible*. The 3D images allow for checking the axi-symmetry of SSM and for detecting the possible presence of the non-axi-symmetric hosing instability (HI).
* F. Batsch et al., Phys. Rev. Lett. 126, 164802 (2021). |
||
Slides FROXGD1 [4.026 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FROXGD1 | |
About • | Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 30 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FROXGD2 |
Development of a Quantum Electron Beam Diagnostic Apparatus | |
|
||
Funding: U.S. DOE Contract No. DE-AC05-06OR23177 and Jefferson Lab LDRD program. Characterization of electron beam properties using optical detection methods through the interaction between photons and electrons such as Compton scattering or electro-optic sampling have been successfully implemented as non-invasive diagnostics at various accelerator facilities. However, such methods often suffer from inherently low sensitivity. Here we present the study of a new type of electron beam diagnostic device for direct optical imaging of electron beams at various energy levels. The concept relies on high sensitivity of atoms, prepared in a specific spin quantum superposition, to the perturbations induced by the passing charged particle. Specifically, the magnetic field of the electrons induces polarization change of the probe light as well as changes in light absorption and fluorescence, enabling direct 3D imaging of the charged particles with high resolution. We report our recent experiment results and the design effort on a compact apparatus intended to be tested with the relativistic electron beams at Jefferson Laboratory. |
||
Slides FROXGD2 [17.656 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FROXGD3 | Injection Beam Measurement Using Synchrotron Radiation Monitor at the SuperKEKB Electron Ring | 3121 |
|
||
We upgraded the diamond mirror of the SuperKEKB electron ring to extract the good quality synchrotron light in 2020 summer. As a result, the accuracy of profile measurement for each bunch using a gate camera has improved dramatically, and it has become possible to measure the incident beam for each turn. The electron beam was injected with single turn injection mode to measure the properties of the beam and measured turn by turn after injection. In order to convert the measurement results into beam size, convolution by diffraction effect and absolute value calibration using real images were performed. We report the behavior of the injection beam during normal operation of SuperKEKB. | ||
Slides FROXGD3 [5.560 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FROXGD3 | |
About • | Received ※ 09 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 07 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |