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Abstract

Next generation particle accelerators craft increasingly

high brightness beams to achieve physics goals for applica-

tions ranging from colliders to free electron lasers to studies

of nonperturbative QED. Such rigorous requirements on

total charge and shape introduce diagnostic challenges for

effectively measuring bunch parameters prior to or at inter-

action points. We report on the simulation and training of

a non-destructive beam diagnostic capable of characteriz-

ing high intensity charged particle beams. The diagnostic

consists of a tailored neutral gas curtain, electrostatic mi-

croscope, and high sensitivity camera. An incident electron

beam ionizes the gas curtain, while the electrostatic micro-

scope transports generated ions to an imaging screen. Simu-

lations of the ionization and transport process are performed

using the Warp code. Then, a neural network is trained

to provide accurate estimates of the initial electron beam

parameters. We present initial results for a range of beam

and gas curtain parameters and comment on extensibility to

other beam intensity regimes.

INTRODUCTION

Next generation accelerator facilities necessitate novel

diagnostics to characterize the transverse and longitudinal

profiles for ultrashort, high brightness electron beams[1].

Typical methods employ intercepting monitors such as phos-

phor screens, scintillators, or wire scanners[2]. These tech-

niques are unsuitable for facilities requiring non-intercepting

diagnostics, or for which beam intensities exceed damage

thresholds for the requisite monitors, as well as for novel

plasma-based beam sources[3]. Noninvasive gas-based mon-

itors have been explored as residual ionization profile moni-

tors and induced fluorescence monitors, but are limited in

their sensitivity for low charge, ultrashort bunches [4, 5].

Recent work has demonstrated the viability of an intense

gas column and ion transport system to provide sufficient

sensitivity and resolution to meet these demands[6].

In this paper, we describe simulation studies of a non-

destructive single shot diagnostic and the development of

a machine learning (ML) based reconstruction algorithm

capable of characterizing beam parameters from the result-

ing ionization measurement. The design leverages a tailored

gas curtain positioned at 45◦ angle with respect to the in-

coming beam. The incident beam ionizes the gas in the

curtain, and the ion products are subsequently transported
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and magnified through an electrostatic microscope, consist-

ing of a triplet of annular electrostatic plates accelerating

and expanding the beam until it reaches an imaging sys-

tem combining a micro-channel plate detector, phosphor

screen, and camera[7]. Below we describe the simulation

and analysis pathway developed to describe (1) the beam-gas

interaction and ionization products, (2) the transport of the

ions to an imaging system, and (3) an ML-based reconstruc-

tion algorithm for determining beam parameters based on

the resulting image.

BEAM-INDUCED IONIZATION

Simulations of the beam-gas interaction were performed

using the Warp particle-in-cell code[8]. Warp provides sup-

port for fully self-consistent electromagnetic propagation of

intense beams in two and three-dimensional geometries, as

well as support for external field maps to capture an arbitrary

lens configuration. Warp also includes support for several

relevant ionization models. In this paper, collisional ion-

ization was captured using a binary-electron-dipole model

with relativistic corrections[9], while tunneling ionization

was captured using an ADK model implementation[10]. For

extremely intense beams, tunneling ionization can become

the dominant mechanism, resulting in aberrations in the ion

distribution consistent with the electric field profile of the

beam[11]. For most of the parametric regimes under consid-

eration for initial tests, ADK ionization rates are insignificant

and impact ionization is the principal mechanism.

TRANSPORT

Beam transport through the electrostatic lens was modeled

again using the Warp code along with the ion distributions

generated by the electron beam and gas sheet interaction.

Electrostatic fields generated from CST Microwave Studio

simulations of the ion microscope were imported into Warp

alongside the initial ion profile. The beam was transported

170 mm from the beam axis and magnified ∼10x through

the imaging plane, where a synthetic diagnostic was applied

to capture the 2D profile of the beam as it would be seen

on the phosphor screen. To expedite simulations, a mov-

ing window was used, and a radial aperture condition was

applied to remove electrons which would otherwise collide

with the electrostatic column. Figure 1 depicts a typical

beam envelope as it travels along the ion microscope.
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Figure 1: Simulated ion beam envelope as transported

through the electrostatic lens using the Warp code.

RECONSTRUCTION

With the ionization and transport process models in place,

we next developed a reconstruction algorithm to produce

critical beam parameters using the ion image as an input.

Dataset

Our training dataset comprises input parameter settings

and the corresponding output from the ionization and trans-

port simulations, where the output is an ion image size

64 × 64. We performed an ensemble of large-scale Warp

simulations using RadiaSoft’s rsopt library. rsopt [12] is a

framework designed for managing and executing resource-

intensive simulations and optimizations on parallel archi-

tectures. rsopt enables one to decouple the optimization

algorithm configuration, simulation setup, and evaluation.

To support its core routines, rsopt is built on the libEnsem-

ble [13, 14] library, which provides a standard API for com-

munication between workers.

We constructed our dataset as a random subset (900 sam-

ples) of a Latin hypercube experiment design containing

1900 samples in the three-dimensional input parameter space.

In order to capture the expected conditions from FACET-II,

we focus on gas sheet densities in the range 10
19

m
−3

≤ �� ≤

10
22

m
−3, a beam �� in the range 40�� ≤ �� ≤ 60��, and

a beam �� in the range 20 �� ≤ �� ≤ 35 ��. The training

and testing sample points used in this study are shown in

Fig. 2.

For all simulations, the beam charge was kept fixed at� ∼

0.5��, a reflection of the expected precision in beam charge

delivered at the beamline for test experiments. Finally, we

carried out model evaluation with a held-out 20% validation

set.

Network Architecture

We employed a neural network to experimental parame-

ters (gas sheet density, beam �� , and ��) given an image

as an input. We adopted a convolutional neural network

(CNN) architecture as they are convenient for processing

Figure 2: PIC simulations explored a three-dimensional

parameter space as depicted. Test data are randomly drawn

from the parameter space to obtain a 20% validation set.

(a) Simulated ion image (b) Reconstructed e− beam

Figure 3: Example reconstruction.

images, and implemented our CNN in Keras [15]. The CNN 
comprises a sequence of 3 × 3 convolution layers, each ap-
plying ReLu activation and batch normalization. A dropout 
of 0.25 is applied between layers and a dense layer (128) 
is employed after the final convolution. We employ a con-

ventional formulation based on minimizing a loss function 
with the mean-squared error. We minimize this output by 
accelerated gradient descent using an Adam optimizer with 
a learning rate set to �� = 10

−3 in a series of epochs. We 
employed the ReLu activation function and MinMaxScaler 
regularization. Input images were downsampled to 64 × 64 
arrays to reduce network size and expedite training. Figure 3 
depicts an example reconstruction from a sample ion beam 
image to an electron transverse beam trace space.

Results

Figure 5 illustrates the training and validation loss er-

ror. The loss error goes down up to 100 epochs, reaching a 
plateau for both the training and validation curves. We do 
not see any prior indication of potential overfitting.

Figure 4 show the correlation plots with the test score for 
the sheet density, beam �� , and beam �� . We observe that 
the determination coefficient �2 converges towards 1.0 for 
each parameter, indicating that the surrogate model accu-
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Figure 4: Performance test of the candidates surrogate learned with the CNN. From left to right, subpanels depict the

sheet density, beam �� , and beam �� . The x-axis depicts data from the Warp simulations (true representation); the y-axis

represents the surrogate model prediction. Note that the CNN surrogate reproduces truth representation relatively well in

each case, and the coefficient of determination �2 for each variable exceeds 0.8, indicating the robustness of the prediction.

Figure 5: Training and validation loss as function of epoch

follow closely, indicating no overfitting in this regime.

rately represents the ground truth data. Our relatively simple

CNN model struggles to predict the charge distribution when

including the beam charge as a fourth input parameter to the

space. One may expect that a better sampling strategy that

efficiently covers input space may help improve the model

performance. Additionally, tuning the CNN’s optimizer, ter-

mination conditions, and other hyperparameters will likely

produce a better model.

CONCLUSION

We have designed and modeled a non-destructive single-

shot diagnostic for high brightness electron beams. The

diagnostic leverages a low density gas sheet, electrostatic

ion microscope, and high gain imaging system to control

and amplify a precision ionization signal. We simulated the

electron beam interaction with the gas sheet, evaluated the

ionization products, and transported the ions through the

electrostatic column to generate an emulated image. We then

developed and trained a neural network to reproduce critical

beam parameters such as charge and transverse profile using

only the resulting image as an input. The resulting network

robustly identifies beam parameters across a 50% variation

in beam transverse size, and an order of magnitude variation

in gas sheet density. Furthermore, the evaluation of the neu-

ral network is orders-of-magnitude faster than the execution

of the series of PIC simulations. This work demonstrates

the efficacy of both the diagnostic design and of ML-based

analysis to predict beam parameters at unprecedented bright-

ness.
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