Experimental Slice Emittance Reduction at PITZ using Laser Pulse Shaping

Raffael Niemczyk IPAC 2022 Bangkok, 16.06.2022

HELMHOLTZ

Free-electron laser performance

Photoinjector Test Facility at DESY in Zeuthen (PITZ)

- Test stand for photo electron guns of FLASH & European XFEL
- Beam energy ≤ 25 MeV
- High brightness
- Bunch charges up to 5 nC
- Various diagnostics
 - Emittance
 - RF deflector (TDS)
 - Longitudinal phase space
- Flexible laser pulse shapes

Emittance optimisation in photoinjectors

Emittance optimisation using laser pulse shaping

- Laser pulse shape determines bunch shape (near cathode)
- Bunch shape determines space charge forces
- Non-linear space charge forces lead to emittance growth

→ Photocathode laser pulse shaping = tool for emittance reduction

[1] F. Zhou et al., PR STAB **15**, 090701 (2012)
[2] H.Chen et al., PRAB **24**, 124402 (2021)
[3] M. Haenel, PhD thesis, Hamburg (2010)
[4] T. Plath et al., Proceeding IBIC2013, TUPC03

Transversely deflecting structure (TDS)

Mapping longitudinal to vertical coordinate

- Bunch profile
- Longitudinal phase space
- Time-resolved transverse phase space
 - Slice emittance

Properties

- European XFEL prototype
- 3 GHz (S band)
- Pulse length \leq 3 µs
 - Deflection of up to 3 bunches
- Deflection voltage 1.7 MV
- Resolution \geq 200 fs (typically)

[1] D. Malyutin, Ph.D. thesis, Universität Hamburg, (2014)

Projected emittance diagnostics

- Cut-out emittance-dominated beamlets from space charge-dominated beam with slit^[1]
 - Mapping divergence to beam size: $x_1' \rightarrow x_2$
 - Measure position, divergence, & intensity
- Reconstruct phase space
 - Emittance calculation via $\epsilon = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle \langle xx' \rangle^2}$

[1] M. Krasilnikov et al., PR STAB **15**, 100701 (2012)

Slice emittance diagnostics

- Cut-out emittance-dominated beamlets from space charge-dominated beam with slit^[1]
 - Mapping divergence to beam size: $x_1' \rightarrow x_2$
 - Measure position, divergence, & intensity and time
- Reconstruct phase space
 - Emittance calculation via $\epsilon = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle \langle xx' \rangle^2}$

[1] M. Krasilnikov et al., PR STAB **15**, 100701 (2012)

Challenges

Obstacles

- Systematic error from *space charge effects*
- Low signal-to-noise ratio (SNR) due
 - Slit mask (reduces charge)
 - TDS deflection, 3 bunches max.
 - Long distance: Slit mask → Screen

Measures

- Use of high-sensitivity LYSO screen
- Screen station: Moved camera close to screen
- Use of quadrupole magnets behind slit mask
 - Reduce horizontal beam size
 - Increase SNR
 - Improve temporal resolution

Systematic error estimation

Systematic error simulation studies

Generate standard beam

- Use PITZ standard conditions
- Optimise solenoid focusing strength
- Optimise transverse beam size @ cathode
 - Goal: Lowest projected emittance

Estimation of systematic error

Slice emittance curve with finite SNR

- SNR > 200, slice emittance overestimation
 - Due space charge forces (mainly)
- SNR ~ 50, correct measurement
- SNR < 50, slice emittance underestimation
 - Low-intensity regions invisible

At PITZ

Estimation of systematic error

Beam characterisation

Laser pulse profile	
Temporal	Transverse
Gaussian	Flattop

Beam characterisation

Temporal Gaussian Transverse flattop

Low-emittance beam at European XFEL conditions

- Transverse flattop laser pulse profile
- Temporal Gaussian laser pulse shape
- 250 pC bunch charge
- Laser pulse length 6 ps (FWHM)

Solenoid scan for emittance optimisation

- Operation at optimum
- Proj. hor. emittance $\epsilon_x = 0.53^{+0.09}_{-0.08}$ (syst.) µm

Temporal Gaussian Transverse flattop

Emittance curve

- Higher emittance in centre
- Centre slice emittance $\epsilon_{\chi} = 0.69^{+0.05}_{-0.03}$ (stat.) µm
- Emittance reduces towards both tails
- Simulation curve agrees with measurement in centre

Mismatch

- Small mismatch in centre of bunch
- Large mismatch at both tails
- Simulation: Mismatch similar, but rises closer to centre

Emittance decomposition

- High thermal emittance/non-linear radial space charge forces
- Longitudinal variation of transversely focusing forces
- Improper beam trajectory, leading to misalignment

[1] C. Mitchell, A General Slice Moment Decomposition of RMS Beam Emittance, (2015).

Enables deeper insight into **beam quality optimisation**

Temporal Gaussian Transverse flattop

Slice phase space ellipses & centroids

- Varying emittance & orientation visible
- (Mostly) linear misalignment visible as well

Emittance decomposition

- Slice emittance main contribution to projected emittance
- Moderate mismatch contribution
- Misalignment negligible

±FWHM/2	Measurement	Simulation
Projected emittance	0.68 µm	0.69 µm
Slice emittance	0.64 µm	0.60 µm
Mismatch emittance	0.25 µm	0.30 µm
Linear misalignment emittance	0.05 µm	0.01 µm
Non-linear misalignment emittance	< 0.01 µm	< 0.01 µm

Beam characterisation

Laser pulse profile		
Temporal	Transverse	
Gaussian	Flattop	
Flattop	Flattop	
Gaussian	Truncated Gaussian	

Temporal flattop

Transverse flattop

- Centre slice emittance $\epsilon_x = 0.50 \pm 0.01$ (stat.) µm
- Simulation curve agrees with measurement in centre

Temporal Gaussian Transversely-truncated Gaussian

- Centre slice emittance $\epsilon_{\chi} = 0.47^{+0.05}_{-0.03}$ (stat.) µm
- High emittance at both tails

Temporal flattop Transverse flattop

Slice phase space ellipses & centroids

- Varying tilt along z
 - Smaller/higher correlations in tails than in centre
- Shift in centroid positions
 - (Mainly) linear shift in centre

±FWHM/2	Measurement	Simulation
Projected emittance	0.57 µm	0.52 µm
Slice emittance	0.50 µm	0.49 µm
Mismatch emittance	0.23 µm	0.19 µm
Linear misalignment emittance	0.10 µm	0.01 µm
Non-linear misalignment emittance	< 0.01 µm	< 0.01 µm

Emittance decomposition

• Good agreement of measurement & simulation

Temporal Gaussian Transversely-truncated Gaussian

Slice phase space ellipses & centroids

• Varying emittance & orientation visible

Emittance decomposition

• Mismatch emittance much larger in simulation

±FWHM/2	Measurement	Simulation
Projected emittance	0.47 µm	0.60 µm
Slice emittance	0.45 µm	0.45 µm
Mismatch emittance	0.13 µm	0.40 µm
Linear misalignment emittance	0.06 µm	0.01 µm
Non-linear misalignment emittance	< 0.01 µm	< 0.01 µm

Summary & outlook

Summary

Slit scan + TDS allows slice emittance measurement

- Systematic error acceptable
- Temporal resolution improved down to 200 fs with focusing

Signal-to-noise ratio increased

- LYSO screens, optimised screen station, quadrupole focusing, wider slit opening
- Improved time resolution allows reduction of TDS voltage

Several beams characterized in experiment

- Emittance reduced by going from temporal Gaussian to flattop
- Emittance reduced by going from temporal Gaussian to Transversely-truncated Gaussian

Emittance decomposition

• Gives insight, how projected emittance can be reduced

Outlook.

Variability of SNR due LASER system & camera system

- New laser system for PITZ (NEPAL-P) in 2023
 - Higher repetition rate (1 MHz \rightarrow 4.5 MHz)
- Upgrade camera
 - Electron-Multiplying CCD camera (EMCCD)
 - Lower noise improves SNR further

R&D program towards CW-operation of European XFEL

- Reduced gun gradient
- PITZ can characterize beams at cw-gun conditions
- Slice emittance optimisation by laser pulse shaping

Thank you

Contact

Deutsches Elektronen-	Raffael Niemczyk
Synchrotron DESY	PITZ Group
	raffael.niemczyk@desy.de
www.desy.de	+49 33762/7-7280