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Abstract
Interpretation of data from beam position monitors is a

crucial part of the reliable operation of European XFEL. The
interpretation of beam positions is often handled by a physi-
cal model, which can be prone to modeling errors or can lead
to the high complexity of the computational model. In this
paper, we show two data-driven approaches that provide in-
sights into the operation of the SASE beamlines at European
XFEL. We handle the analysis as a data-driven problem,
separate it from physical peculiarities and experiment with
available data based only on our empirical evidence and the
data.

INTRODUCTION
The European Free Electron Laser (EuXFEL) has been

running with very high availability for several years. This
high reliability put a lot of attention on the analysis of the
operations on various levels. EuXFEL is a pulsed machine
with a repetition rate of 10Hz and the properties of each
shoot may change. Therefore, anomaly detection on linacs
is still very limited. For beam trajectories, this is given by
a very limited ability to explain how beam positions are
affected by an ongoing anomaly since the beam trajectory
changes for each injection. What makes the analysis of the
beam even more challenging is that its trajectory can further
vary from pulse to pulse due to various circumstances.

At the EuXFEL we are currently operating 103 beam po-
sition monitors (BPMs) at three SASE beamlines to measure
the position of the beam passage through the undulator lines.
All BPMs measure position and charge of up to 2700 bunches
in a single bunch train. The absolute beam position is, un-
like many other predictive maintenance tasks, a rather more
approximate and global indicator, since the contribution of
an issue on the beam position is often unknown.

The beam optics in the undulator lines is controlled by the
use of a so-called FODO lattice. These alternating magnetic
fields can introduce a periodic variation of the trajectory
named betatron oscillation [1]. We can observe a specific
periodic pattern of the electron bunches passing through the
FODO lattice as shown in Fig. 1. This evidence imposes an
assumption about the beam irrespective of its trajectory since
the 𝛽-function of electron bunches will always follow the
symmetry of the FODO lattice and should therefore preserve
its period.

An ongoing problem might be indicated in various ways.
For instance, if there is an anomaly on a magnet, the trajec-
tory might be noticeably affected by an increased jitter.

One of the common approaches is modeling the beam
trajectory and its comparison with a physical model [2].
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Figure 1: An example input to our methods. The left figure
shows a series of the first five bunch trajectories at the SASE1
beamline after the mean of 600 bunches is subtracted. The
right figure shows a series of bunches after substraction of
mean. Each column is one 𝜇pulse.

A promising data-driven anomaly detection approach on
synchrotons at LHC on BPM data was shown by Fol et al. [3,
4] to identify faulty BPMs.

We show two data-driven approaches based on our empir-
ical evidence of the beam data at EuXFEL. The first use our
assumption of the periodicity imposed by the FODO lattice
and fits trajectories using a simplified assumption about the
beam dynamics - mainly fitting a periodic - sine - function.
The latter is a purely data-driven machine learning approach
that trains to map a set of beam positions in arbitrarily long
sequences to a common mode and any deviation from the
mode is treated as an anomaly. This allows more flexibil-
ity in handling the input and can eventually reveal relations
between bunch trains.

Our contributions can be summarized as follows: We
show two data-driven approaches for the analysis of beam
trajectories at the EuXFEL. The first is a method that takes
into consideration a simplified empirical model of the lattice
and measures the residual of this model. The second is a
completely model-free approach based purely on data that
models inputs from a set of multiple bunches.

In the following section, we introduce the notation and
explain both proposed models. After, we show some ex-
periments on the real data we experience at EuXFEL at
SASE beamlines, and in the last section, we conclude our
evaluation of the available real data.

METHOD
EuXFEL produces trains of electron bunches at a fre-

quency up to 4.45MHz at a repetition rate of 10 Hz. These
consecutive pulses vary in their individual properties and
the resulting trajectory can vary from train to train. If a
mean beam position is subtracted over a certain time range,
we can obtain the underlying pattern formed by the mag-
nets, as described in the introduction. Visually, it forms a
characteristic periodical pattern, which can be seen after
subtracting a mean trajectory which we consider as an input,
see Fig. 1. Understanding these patterns provides important
insights into underlying beam dynamics. The EuXFEL can
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h1 =Transformer1(D̂)
input=dim, output=dim

h2=Transformer2(h1)
input=dim, output=dim

s = ∥ϕ− c∥2
input=16, output=1

ϕ=Linear(h2)
input=dim, output=16

D̂

features fθ(D̂)

Figure 2: Proposed data-driven two-layer transformer architecture for detection of anomalies. The input D̂ is a sequence
of stacked vertical and horizontal positions of a beam in selected beamlines. The dimension of input and all consecutive
layers depends on the number of BPMs present at the diagnosed beamline. The inputs are passed through two transformer
layers [5] to produce a vector h2. Its value is further passed to the final linear layer 𝜙. Per-pulse calculation of anomaly
score 𝑠 is performed via measuring 𝐿2 distance from a vector c.

produce up to 2700 bunches in a 𝜇pulse (bunch train), but
we consider only the first bunch in a bunch train. From a
so-called 𝜇pulse number 𝜇 we can associate the same bunch
trains at all BPMs along the trajectory and therefore monitor
it. Because EuXFEL itself is not operating continuously, we
consider each 𝜇pulseas one sample at a time.

We are presenting two major methods of how we tack-
led the analysis of anomalies on beam orbits. The first is
empirical-based and assumes the periodic pattern of the
beam trajectory on the 𝛽-function imposed by the FODO
lattice, see Fig. 1. We fit the observed values with a sine
function which should empirically approximate the data and
score the anomality as deviation from this pattern, expressed
by residuals of all BPM values to the fitted function.

The second approach is solely based on the data and ne-
glects any periodicity by training a model to project input
data to a standard lower-dimensional mode. Due to the ab-
sence of labels, one class loss (OCL) [6] loss is employed
to train the proposed model. The OCL trains a model to
learn a transformation that minimizes the volume of a data-
enclosing hypersphere in feature space centered on a point.
In the test phase, the anomality is measured as the distance
from the hypersphere center.

It then allows modeling of more complicated unknown
relations of events which are spread over multiple bunch
trains (seconds timescale). It is important to highlight that
we always consider only the first bunch in a bunch train.

Notation
We consider that a position of the first bunch in a bunch

train is observed at 𝑛th BPMs at a time 𝜇 at 𝑥𝜇
𝑛 and 𝑦𝜇

𝑛
for horizontal and vertical coordinates respectively. For
each bunch train, we have a 𝜇pulse number which uniquely
identifies it in different bunch trains in 𝑁 BPMs. We put
the coordinates from 𝑁 BPMs into vectors with horizontal
and vertical coordinates x𝜇 and y𝜇 respectively. We stack a
series of consecutive 𝜇pulses coordinates x and y (e.g. one
minute) into a data matrix D where each row encodes one of
𝑁 BPM and column one a 𝜇pulse. We subtract the column-
mean of a data matrix D and obtain a normalized matrix D̂
shown in Fig. 1 where one can notice the periodic pattern
on the 𝛽-function imposed by the FODO lattice.

Empirical Model
Based on the aforementioned evidence, we assume that the

𝛽-function must follow a periodic pattern, which resembles

the sine function. We built a curve fitting approach, where
we fit the normalized beam positions x̂𝜇 and ̂y𝜇 from the
matrix D̂ to a hypothesized function 𝑔. We define 𝑔 as a sine
function parameterized with amplitude, period, phase shift,
and frequency. Since we distinguish between horizontal
and vertical coordinates, we consider two different param-
eterizations 𝜙𝑥 and 𝜙𝑦 for both orientations. Under these
conditions, individual beam positions ̂𝑥𝜇

𝑛 and ̂𝑦𝜇
𝑛 should

mirror their fitted functions 𝑔𝜙𝑥
(𝑛, 𝜇) and 𝑔𝜙𝑦

(𝑛, 𝜇). The
quantity which expresses the anomality can be expressed by
residuals i.e.

𝑟𝑥 = ‖𝑔𝜙𝑥
(𝑛, 𝜇) − ̂𝑥𝜇

𝑛 ‖2 and 𝑟𝑦 = ‖𝑔𝜙𝑦
(𝑛, 𝜇) − ̂𝑦𝜇

𝑛 ‖2.

Purely Data-Driven Model
Attention-based models [5] gained a lot of popularity in

handling sequences. Working with sequences is particu-
larly useful in taking into consideration anomalies that are
spread over multiple bunch trains since the attention-layer
can access all previous states in the same input and weight
them according to the learned relevance. The location of
individual elements in sequence is encoded with positional
encoding. We are, however, interested mostly in the co-
occurrence of relevant bunches and neglect their position in
sequence at this stage.

The network architecture is shown in Fig. 2. It consists of
a two-layer transformer with a linear layer in the output. For
simplicity, only a single head is used in both transformers.
The transformer layer associates 𝜇pulses in input data and
may take into consideration various unknown properties
between bunches. Since we do not have explicit labels we
adopted the OCL [6] to train the model

𝐿(𝜃) = ‖𝑓𝜃(D̂) − c‖2, (1)

where the model 𝑓𝜃 and hypersphere center c are gradually
trained to transform inputs D̂ to a lower-dimensional feature
space where the common inputs are transformed to be close
to c. Anomaly score 𝑠 is calculated identically as OCL loss
by measuring the 𝐿2 distance of 𝑓𝜃 to c.

EXPERIMENTS
Data Acquisition and Implementation Details

Data from BPM at respective beamlines was acquired
with our DAQ system [8]. For long-term analyses, the data
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Healthly SASE1 and SASE3 bunches Faulty SASE1 and SASE3 bunches Anomaly Score 𝑠 TSNE Embedding
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Figure 3: (Top) SASE1 undulator server crashed after an unusual selection of colours for individual cells (2022-03-07
20:45:00) (Bottom) A phase shifter at SASE3 does not move (2022-04-25 21:23:42). The data used for evaluation are taken
one hour before the issue was reported. (Left) healthy bunches with the lowest scores. SASE3 is distinguished by dashed
lines. (2nd) Faulty bunches with high scores, notice the increased amplitude compared to healthy bunches. (3rd) Anomaly
score 𝑠, the horizontal axis is in minutes. (Right) TSNE Embedding [7] of 𝑓𝜃(D̂). Notice that healthy (blue) and faulty (red)
points do not overlap. This should indicate a high likelihood of an issue.
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Figure 4: Residuals 𝑟𝑥 and 𝑟𝑦 of the empirical model for the same 
faults shown in Fig. 3 on SASE1 and SASE3.

are stored in 1-minute chunks with 8-bit float precision to 
minimize requirements for data storage. Each chunk 
usually consists of a series of 600 orbits. For training the 
purely data-driven model we used data recorded in the time 
range from Feb 25, 2022, to May 19, 2022. Alongside the 
records from the DAQ, we also have available a logbook 
with reported time-stamped issues with a detailed 
description of the issue. The transformer layers of the 
purely data-driven model are implemented with a PyTorch 
[9]. The inputs with no beam were neglected.

Results
We selected some issues from the EuXFEL logbook 

and evaluated the proposed approaches on the data we 
have avail-able. For the purely data-driven approach, 
we analyzed the available beam position data from 
SASE1 and SASE3 beamlines, where we are currently 
operating 64 BPMs. The SASE2 beamline should be 
unaffected by the selected faults since it is in a separate 
branch and is therefore neglected for now. For 
comparison, we sampled one-minute samples ev-ery 
two hours in the entire dataset we have available to 
have a comparison with a normal setting. The first issue 
we selected is a crash of the undulator server after an 
unusual selection of colors for individual cells which 
took place on 7. March 2022 at 20:45. Data shown in 
both Fig. 3 and Fig. 4 show a notice-able increase in the 
anomaly score. The long-term maximum 𝑠 is 
approximately 0.03, while the highest achieved score

an hour before the issue was reported is around 1.4, with 
numerous indications within this hour. The ridges are also 
visible in residuals of the empirical model. The second issue 
is the phase shifter at SASE3 which does not move. The 
issue was reported on 25.April 2022 at 21:23:42. There is 
a noticeable variation in SASE3 compared to healthy data. 
The highest score 𝑠 is 0.2. Analysis of the feature space with 
TSNE embedding [7] reveals, that issues cause variation in
the features 𝑓𝜃(D̂) which does not overlap with the long-term
data, see right column in Fig. 3.

CONCLUSION
In this paper, we introduce two approaches for the analysis 

of beam dynamics at EuXFEL. We exploit our empirical 
evidence about the 𝛽-function which provides a direct in-
terpretable indication of the beam position data by fitting 
a sine function. The latter is purely data-driven and allows 
more complex inputs of the inter-bunching relations by con-
sidering multiple bunches.

The presented approach reveals that we are already able 
to identify some issues taking place where beam trajecto-
ries are affected by an ongoing problem in beamline within 
data recorded one hour before the fault was reported. The 
long-term evaluation revealed a lot of variation in beam 
positions caused by numerous operations and therefore the 
scoring of purely data-driven models often yielded many 
false positives, which currently limits the current application 
for predictive maintenance. Experiments show that both ap-
proaches are similarly efficient with revealing problems on 
beam trajectory. One of the potential benefits of the purely 
data-driven approach is feature space, which allows further 
investigation of otherwise hidden relations between bunch 
trains. Additionally, there is a limited ability to correlate an 
issue with its effects on the position of the beam.
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