JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOPOPT049: Study on Energy Spectrum Measurement of Electron Beam for Producing MIR-FEL at PBP-CMU Electron Linac Laboratory

@inproceedings{kitisri:ipac2022-mopopt049,
  author       = {P. Kitisri and S. Rimjaem and K. Techakaew},
  title        = {{Study on Energy Spectrum Measurement of Electron Beam for Producing MIR-FEL at PBP-CMU Electron Linac Laboratory}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {367--370},
  eid          = {MOPOPT049},
  language     = {english},
  keywords     = {electron, dipole, FEL, linac, emittance},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-MOPOPT049},
  url          = {https://jacow.org/ipac2022/papers/mopopt049.pdf},
  abstract     = {{At the PBP-CMU Electron Linac Laboratory (PCELL), we aim to produce a mid-infrared free-electron laser (MIR-FEL) for pump-probe experiments in the future. The electron beam is generated from a thermionic cathode radio-frequency (RF) gun with a 1.5-cell cavity before going to an alpha magnet. In this section, some part of the beam is filtered out by using energy slits. The selected part of the beam is then further accelerated by an RF linear accelerator (linac) to get higher energy. This work focuses on the measurement of energy spectrum of electron beam for producing mid-infrared free-electron laser (MIR-FEL). Since our bunch compressor (BC) for the MIR-FEL beamline is an achromat system, the longitudinal distributions of electron beam at the entrance and the exit of the BC are almost the same. Thus, we can measure the longitidinal properties of the beam before it travels to the BC. By using a dipole magnet and a Faraday cup with a slit, we can measure energy spectrum of electron beam before entering the BC. In this study, the ASTRA code is used to investigate the properties of electron beam as well as to design the measuring system. The design results including systematic error of the measuring system are presented and discussed in this contribution. The results from this work can be used as the guideline for the measuring system construction as well as the beam operation.}},
}