JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for MOPOPT018: Advancing to a GHz Transition Radiation Monitor for Longitudinal Charge Distribution Measurements

@inproceedings{klaproth:ipac2022-mopopt018,
  author       = {S. Klaproth and H. De Gersem and A. Penirschke and T. Reichert and R. Singh},
  title        = {{Advancing to a GHz Transition Radiation Monitor for Longitudinal Charge Distribution Measurements}},
  booktitle    = {Proc. IPAC'22},
% booktitle    = {Proc. 13th International Particle Accelerator Conference (IPAC'22)},
  pages        = {267--270},
  eid          = {MOPOPT018},
  language     = {english},
  keywords     = {vacuum, radiation, target, simulation, electron},
  venue        = {Bangkok, Thailand},
  series       = {International Particle Accelerator Conference},
  number       = {13},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2673-5490},
  isbn         = {978-3-95450-227-1},
  doi          = {10.18429/JACoW-IPAC2022-MOPOPT018},
  url          = {https://jacow.org/ipac2022/papers/mopopt018.pdf},
  abstract     = {{In the past, longitudinal beam profiles have been measured with e.g., Feschenko monitors*, Fast Faraday Cups (FFC)** and field monitors. Feschenko monitors usually examine an average shape over several pulses and FFCs are interceptive devices by design. In this work we want to present the progress in the development of a novel GHz diffraction radiation monitor which shall be able to measure the longitudinal charge distribution of single bunches within Hadron beam LINACS non-destructively. A proof-of-concept measurement has been performed at GSI. We aim for a resolution of 50 to 100ps at beam energies of β=0.05 to 0.74. electronic field simulations were performed using CST Particle Studio to determine an optimal RF-Window, which also suits as vacuum chamber and the beam energy and angular dependencies of the diffraction radiation for different materials were analyzed.}},
}