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Abstract 
A MeV ultrafast electron diffraction (MUED) instrument 

is a unique characterization technique to study ultrafast 
processes in materials by a pump-probe method. This rela-
tively new technology can be advanced further into a turn-
key instrument by using data science and artificial intelli-
gence (AI) techniques in conjunctions with high-perfor-
mance computing (HPC). This can facilitate auto-mated 
operation, data acquisition and real-time or near-real-time 
processing. AI-based system controls can pro-vide real-
time feedback on the electron beam which is currently not 
possible due to the use of destructive diagnostics. Deep 
learning can be applied to the MUED diffraction patterns 
to recover valuable information on subtle lattice variations 
that can lead to a greater understanding of a wide range of 
material systems.  A data science enabled MUED facility 
will also facilitate the application of this technique, expand 
its user base, and provide a fully automated state-of-the-art 
instrument. We will pro-vide updates on research and de-
velopment efforts the MUED instrument in the Accelerator 
Test Facility of Brookhaven National Laboratory.  

INTORDUCTION 
MeV ultrafast electron diffraction (MUED) is a pump-

probe characterization technique for studying ultrafast pro-
cesses in materials. The use of relativistic beams leads to 
decreased space-charge effects compared to typical ultra-
fast electron diffraction experiments employing energies in 
the keV range [1, 2]. Compared to other ultrafast probes 
such as X-ray free electron lasers, MUED has a higher scat-
tering cross section with material samples and allows ac-
cess to higher order reflections in the diffraction patterns 
due to the short electron wavelengths. 

However, this is a relatively new technology and several 
factors contribute to making it challenging to utilize, such 
as beam instabilities which can lower the effective spatial 
and temporal resolution. In the past years, machine learn-
ing (ML) approaches to materials and characterization 
techniques have provided anew path towards unlocking 
new physics by improving existing probes and increasing 

the user’s ability to interpret data. Particularly, ML meth-
ods can be employed to control characterization probes in 
near-real time, acting as virtual diagnostics, or ML can be 
deployed to extract features and effectively denoise ac-
quired data. In this later case, convolutional neural network 
architectures such as auto encoder models are an attractive 
and more powerful alternative to conventional denoising 
techniques. The autoencoder models provide a method of 
unsupervised learning of latent space representation of data 
that can help reduce the noise in the data. By supplying a 
paired training dataset of “noisy” and “clean” data, these 
ML models can denoise measurements quite effectively [3, 
4]. This method relies on the existence of an ideal dataset 
with no noise which can be obtained by simulation or by 
averaging existing noisy datasets. However, in some cases 
these are not accessible or practical to use. Generative ad-
versarial networks (GANs) are a more suitable option 
when no “clean” data are available and have been proven 
to perform well for blind image denoising [5]. They can be 
trained to estimate and generate the noise distribution, thus 
producing paired training datasets that can be fed to an au-
toencoder model. These approaches can lead to increased 
resolution if employed to denoise, for example, diffraction 
patterns. In addition, deep convolutional neural network ar-
chitectures can be used for data analysis. Laanait et. al., for 
instance, measured diffraction patterns of different oxide 
perovskites using scanning transmission electron micros-
copy and, by applying a custom ML algorithm, were able 
to invert the materials structure and recover 3-dimensional 
atomic distortions [6]. ML has yet to be applied to the 
MUED technique, where it can certainly enable advances 
that can further our understanding of ultrafast material pro-
cesses in a variety of systems. 

EXPERIMENTAL 
The MUED instrument is located at the Accelerator Test 

Facility at Brookhaven National Laboratory. A schematic 
representation of the experimental setup is presented in 
Fig.1. The details of data collection are very briefly. de-
scribed here. The femtosecond electron beams are gener-
ated using a frequency-tripled Ti:Sapphire laser that illu-
minates a copper photocathode, generating a high bright-
ness beam. The electrons are then accelerated and 
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compressed in a 1.6-cell RF cavity achieving energies up 
to 5 MeV. Current parameters of the electron beam source 
optimized for stability are presented in Table 1. The sample 
chamber is located down-stream from the source with a 
motorized holder for up to nine samples with cryogenic 
cooling capabilities and a window to allow laser pumping 
of the material. 4 meters down-stream, the detector system 
is located to collect the diffraction patterns. The detector 
consists of a phosphor screen followed by a copper mirror 
(with a hole for non-diffracted electrons to pass) and a 
CCD Andor camera of 512 pixels x 512 pixels with a large 
aperture lens. Suitable material systems for MUED require 
careful preparation with typical lateral sizes of 100 – 
300 μm and roughly < 100 nm thickness to assure electron 
transparency. Laser fluency is adjusted to avoid radiation-
induced damage of the probed material. 

 

 
Figure 1: MUED beamline schematic. 

Table 1: MUED Source Parameters for Typical Operation 

Beam Energy 3 MeV 
Number of electrons per pulse 1.25 x 106 
Temporal resolution 180 fs 
Beam diameter 100-300 μm 
Repetition rate 5-48 Hz 
Number of electrons per sec 
per μm2 

88-880 

 

UPDATES AND FUTURE PLANS 
In 2021, with COVID restrictions lifted, the team has 

had beam time at the facility, and future visits are being 
planned for 2022.  

Our group uses VSim, a finite-difference time domain 
(FTDT) and particle-in-cell (PIC) code developed by Tech-
X, to model different accelerator devices, including the ra-
diofrequency gun of MUED. We are developing a surro-
gate model of the MUED beamline for advanced control-
lers, where VSim is used to model the active region of the 
copper gun that includes the power coupling waveguide 
and tuners. For the rest of the MUED beamline, we use el-
egant, a particle tracker developed at Argonne National La-
boratory. Elegant is more suitable for modelling the beam 
phase space downstream through the solenoid, corrector 
magnets and collimators. With these combined tools we 
can model the un-diffracted electron beam all the way 
down to the detector. We drive the rf gun by defining a 
plane electromagnetic wave travelling through the 

waveguide at 2.856 GHz, it takes then about 100 rf cycles 
to fill the gun and establish the fields in the pi-mode.  

During our last experimental run, we also worked on es-
tablishing a connection between the MUED facility at BNL 
and the computing resources at ALCF. We established this 
connection and will test streaming of data from BNL to 
ALCF in our next beamtime. This will also enable use of 
the method described above for all MUED users regardless 
of the material under study but limited to single crystal 
samples. We also developed scripts for data analysis that 
will also be accessible to users and can be run on ALCF.  

Recently, we have presented two talks on our recent pro-
gress [7, 8]. Finally, a manuscript is in preparation on the 
research on the unsupervised anomaly detection for the 
MUED samples. 
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