MOPOPT —  Poster Session - Padthai   (13-Jun-22   14:00—16:00)
Paper Title Page
MOPOPT002 Improvements on Sirius Beam Stability 226
 
  • S.R. Marques, M.B. Alvespresenter, F.C. Arroyo, M.P. Calcanha, H.F. Canova, B.E. Limeira, L. Liu, R.T. Neuenschwander, A.G.C. Pereira, D.O. Tavares, F.H. de Sá
    LNLS, Campinas, Brazil
  • G.O. Brunheira, A.C.T. Cardoso, R.B. Cardoso, R. Junqueira Leão, L.R. Leão, P.H.S. Martins, Moreira, S.S. Moreira, R. Oliveira Neto, M.G. Siqueira
    CNPEM, Campinas, SP, Brazil
 
  Sirius is a Synchrotron Light Source based on a 3 GeV electron storage ring with 518 meters circumference and 250 pm.rad emittance. The facility is built and operated by the Brazilian Synchrotron Light Laboratory (LNLS), located in the CNPEM campus, in Campinas. A beam stability task force was recently created to identify and mitigate the orbit disturbances at various time scales. This work presents studies regarding ground motion (land subsidence caused by groundwater extraction), improvements in the temperature control of the storage ring (SR) tunnel air conditioning (AC) system, vibration measurements in accelerator components and the efforts concerning the reduction of the power supplies’ ripple. The fast orbit feedback implementation and other future perspectives will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT002  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT003 Studying Instabilities in the Canadian Light Source Storage Ring Using the Transverse Feedback System 230
SUSPMF081   use link to see paper's listing under its alternate paper code  
 
  • S.J. Martens
    University of Saskatchewan, Saskatoon, Canada
  • D. Bertwistle, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • P. Hartmann
    DELTA, Dortmund, Germany
 
  The Transverse Feedback system at the Canadian Light Source can identify, categorize, and mitigate against periodic instabilities that arise in the storage ring beam. By quickly opening and closing the feedback loop, previously mitigated instabilities will be allowed to grow briefly before being damped by the system. The resulting growth in the beam oscillation amplitude curve can be analyzed to determine growth/damp rates and modes of the coupled bunch oscillations. Further measurements can be collected via active excitement of modes rather than passive growth. These Grow/damp and Excite/Damp curves have been collected and analyzed for various storage ring beam properties, including beam energy, machine chromaticity, and in-vacuum insertion device gap widths.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT003  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT004 Development of a New Clusterization Method for the GEM-TPC Detector 233
SUSPMF082   use link to see paper's listing under its alternate paper code  
 
  • M. Luoma, F. Garcia, A. Jokinen, R. Turpeinen, J. Äystö
    HIP, University of Helsinki, Finland
  • T. Blatz, H. Flemming, K. Götzen, C. Karagiannis, N. Kurz, S. Löchner, C. Nociforo, C.J. Schmidt, H. Simon, B. Voss, P. Wieczorek, M. Winkler
    GSI, Darmstadt, Germany
  • D. Chokheli
    Georgian Technical University, Tbilisi, Georgia
  • T. Grahn, S. Rinta-Antila
    JYFL, Jyväskylä, Finland
 
  The Facility for Antiproton and Ion Research FAIR, in Darmstadt Germany, will be one of the largest accelerator laboratories worldwide. The Superconducting FRagment Separator (Super-FRS)* is one of its main components. The Super-FRS can produce, separate and deliver high-energy radioactive beams with intensities up to 1e11 ions/s, covering projectiles from protons up to uranium and it can be used as an independent experimental device. The Gas Electron Multiplier-based Time Projection Chambers (GEM-TPC) in twin configuration is a newly developed beam tracking detector capable of providing spatial resolution of less than 1 mm with a tracking efficiency close to 100% at 1 MHz counting rate. The GEM-TPC (HGB4) was tested at the FRagment Separator (FRS), with 238U beam at 850 MeV/u. A new clusterization method was developed, for the first time and used for an analysis. This method allowed to access to waveforms of each strip signal within a single trigger in an event-by-event basis. The procedures involved in this method will be shown in details.
* H.Geissel et al., The Super-FRS project at GSI, Nucl. Instr. and Meth. in Phys., vol. B204, pp. 71-85, 2003.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT004  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT005 Bunch Measurements with BPM at Low Energy Hadron Accelerators 237
 
  • S.M. Ben Abdillah
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • S. Boussa, A. Gatera, F. Pompon
    SCK•CEN, Mol, Belgium
 
  Beam Position Monitors (BPM) are one of the key diagnostics use in LINACs, BPMs should ensure a continuous monitoring of the beam position and energy. BPMs also give an indication of the beam transverse shape. For electron LINACs, beam longitudinal length is measured with BPMs. However, in hadron LINACs, it is performed with intrusive modules (wire scanners, beam shape monitors) This document relates the measurement of beam longitudinal length with BPMs. It is divided in two parts: first, a theoretical model of the BPM operation and the formulas driving the measurement of beam longitudinal length from BPM output signals. Second, an experimental study run at MYRRHA LINAC facility and showing good agreement between estimated values of beam longitudinal length from Tracewin simulations and BPM measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT005  
About • Received ※ 12 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT006 Characterization of the Electron Beam Visualization Stations of the ThomX Accelerator 240
SUSPMF083   use link to see paper's listing under its alternate paper code  
 
  • A. Moutardier, C. Bruni, J-N. Cayla, I. Chaikovska, S. Chancé, N. Delerue, H. Guler, H. Monard, M. Omeich, S.D. Williams
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • S.D. Williams
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Funding: Research Agency under the Equipex convention ANR-10-EQPX-0051.
We present an overview of the diagnostics screens stations - named SSTs - of the ThomX compact Compton source. ThomX is a compact light source based on Compton backscattering. It features a linac and a storage ring in which the electrons have an energy of 50 MeV. Each SST is composed of three screens, a YAG:Ce screen and an Optical Transition Radiation (OTR) screen for transverse measurements and a calibration target for magnification and resolution characterisation. The optical system is based on commercial lenses that have been reverse-engineered. An Arduino is used to control both the aperture and the focus remotely, while the magnification must be modified using an external motor. We report on the overall performance of the station as measured during the first steps of beam commissioning and on the optical system remote operations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT006  
About • Received ※ 20 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT009 New Bunch-by-Bunch Filling Pattern Measuring System at ELSA 244
 
  • A.K. Wald, K. Desch, D. Elsner, D. Proft
    ELSA, Bonn, Germany
 
  The electron accelerator facility ELSA at the University of Bonn, Germany, can accelerate and store electrons with a final energy from 0.8GeV up to 3.2GeV. To routinely determine the filling pattern in the storage ring, a new measuring system has been developed. For hadron physics experiments the filling pattern, which is influenced by the injection from the pre-accelerating synchrotron, should be as homogeneous as possible. The new measurement system should provide a real-time measurement of the filling pattern, so that the injection can be continuously optimized. Moreover, a position measurement for each individual bunch is provided, from which the two transverse and the longitudinal tunes can be deduced. To measure the bunch-by-bunch intensity and position, the signals of the existing button-type BPMs will be digitized by fast 12-bit ADCs synchronized to the 500MHz ELSA radio frequency. The fast pre-processing and intermediate storage of the data is realized with a 500MHz clocked FPGA and transfers the data to a PC for further processing. First results of measurement system developed in-house will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT009  
About • Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT010 Status of Diamond and LGAD Based Beam-Detectors for the mCBM and CBM Experiments at GSI and FAIR 247
 
  • A. Rost, P.-A. Loizeau
    FAIR, Darmstadt, Germany
  • I. Deppner, N. Herrmann, E. Rubio
    Universität Heidelberg, Heidelberg, Germany
  • J. Frühauf, T. Galatyuk, M. Kis, J. Pietraszko, M. Träger, F. Ulrich-Pur
    GSI, Darmstadt, Germany
  • T. Galatyuk, V. Kedych, W. Krüger
    TU Darmstadt, Darmstadt, Germany
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871072.
The Compressed Baryonic Matter (CBM) experiment* is currently under construction at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The aim of the experiment is the exploration of the Quantum Chromodynamics (QCD) phase diagram of matter at high net-baryon densities and for moderate temperatures. In this contribution a beam monitoring (BMON) system will be presented which will include a high-speed time-zero (T0) detector. The detector system must meet the requirements of the CBM time-of-flight (ToF) measurement system for proton and heavy-ion beams and should also allow for beam monitoring. The detector technology is planned to be based on chemical vapor deposition (CVD) diamond basis but also new Low Gain Avalanche Detector (LGAD) developments are evaluated. In this contribution the beam detector concept will be presented and the results of first prototype tests in the mini-CBM setup will be shown.
*P. Senger, Exploring Cosmic Matter in the Laboratory - The Compressed Baryonic Matter Experiment at FAIR, Particles, vol. 2, no. 4, pp. 499-510, 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT010  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT011 Transverse Excitation and Applications for Beam Control 251
SUSPMF085   use link to see paper's listing under its alternate paper code  
 
  • P.J. Niedermayer, R. Singh
    GSI, Darmstadt, Germany
 
  Transverse excitation of stored particle beams is required for a number of applications in accelerators. Using a time-varying, transverse electric field with a dedicated frequency spectrum, the amplitude and coherence of betatron oscillations can be increased in a controlled manner. This allows for determination of the betatron tune from turn-by-turn position measurements, control of transverse beam shapes, as well as extraction of stored beams. For studies of beam excitation, a custom signal generator is being developed. It is based on software-defined radio (SDR) which allows for configurable signal characteristics and tuneable spectra. This approach enables usage for multiple applications in beam diagnostics and control. To determine appropriate excitation spectra, studies of particle dynamics in presence of excitation are being carried out. Nonlinear fields are also incorporated to account for beam extraction conditions, which affects frequency spectra of beam motion due to detuning effects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT011  
About • Received ※ 30 May 2022 — Accepted ※ 10 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT012 Concept of a Beam Diagnostics System for the Multi-Turn ERL Operation at the S-DALINAC 254
 
  • M. Dutine, M. Arnold, R. Grewe, L.E. Jürgensen, N. Pietralla, F. Schließmann, M. Steinhorst
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by DFG (GRK 2128), BMBF (05H21RDRB1), the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006) and the LOEWE Research Group Nuclear Photonics.
The S-DALINAC is a thrice-recirculating electron accelerator operating in cw-mode at a frequency of 3 GHz. Due to the implementation of a path-length adjustment system capable of a 360° phase shift, it is possible to operate the accelerator as an Energy-Recovery LINAC. The multi-turn ERL operation has been demonstrated in 2021. While operating the accelerator in this mode, there are two sets of bunches, the still-to-be accelerated and the already decelerated beam, with largely different absolute longitudinal coordinates in the same beamline acting effectively as a 6 GHz beam. For this mode, a non-destructive, sensitive beam diagnostics system is necessary in order to measure the position of both beams simultaneously. The status of a 6 GHz resonant cavity beam position monitor (BPM) will be given together with the results of a wire scanner measurement of the multi-turn ERL beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT012  
About • Received ※ 02 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT013 Comparative Study of Broadband Room Temperature THz Detectors for High and Intermediate Frequency Response 257
SUSPMF086   use link to see paper's listing under its alternate paper code  
 
  • R. Yadav, S. Preu
    IMP, TU Darmstadt, Darmstadt, Germany
  • A. Penirschke
    THM, Friedberg, Germany
 
  Funding: Scholarship from Hesse ministry of science and culture (HMWK), Germany.
Room temperature terahertz (THz) detectors based on Field effect transistors (FETs) and Zero-bias Schottky diodes (SD) are prominent members for the temporal-spatial characterization of pulses down to the picosecond scale generated at particle accelerators. Comparative study of in house developed THz detectors both at higher and intermediate frequency (IF) is carried out using table top THz systems and commercially available sources. In this paper, we present high frequency and intermediate frequency (IF) response of Gallium Arsenide (GaAs) FET and Zero-bias Schottky diode THz detectors. The IF results obtained are helpful for understanding and designing of optimized IF circuit with broader bandwidth.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT013  
About • Received ※ 19 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT016 Update of the Bunch Arrival Time Monitor at ELBE 260
 
  • M. Kuntzsch, A. Maalberg, A. Schwarz, K. Zenker
    HZDR, Dresden, Germany
  • M.K. Czwalinna, J. Kral
    DESY, Hamburg, Germany
 
  The bunch arrival time monitor (BAM) at the radiation source ELBE has been upgraded twofold. In order to achieve a higher precision a new frontend has been designed, based on a development by DESY, that uses state of the art 50 GHz electro-optical modulators (EOMs). The frontend allows for thermal control of critical components and monitoring of system parameters. The modulated EOM signals and monitoring data are distributed to a new readout electronic. The new MicroTCA-based receiveris based on a dedicated FMC card developed at DESY that is installed on an FMC25 carrier board. The arrival time is calculated on a FPGA with low latency and can be used for machine diagnostic. The code has been adapted to enable the processing of a data stream of the continuous train of electron bunches, allowing for the implementation of a cw beam based feedback in a next step. The contribution will describe the BAM setup as well as the performance measured at the ELBE accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT016  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT017 Terahertz Sampling Rates with Photonic Time-Stretch for Electron Beam Diagnostics 263
 
  • O. Manzhura, E. Bründermann, M. Caselle, S.A. Chilingaryan, T. Dritschler, S. Funkner, A. Kopmann, A.-S. Müller, M.J. Nasse, G. Niehues, M.M. Patil, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
  • S. Bielawski, E. Roussel, C. Szwaj
    PhLAM/CERLA, Villeneuve d’Ascq, France
 
  Funding: Supported by the Helmholtz Program-Oriented Funding (PoF), research program Matter and Technologies (Detector Technology and System), ANR-DFG ULTRASYNC funding program, CEMPI LABEX and Wavetech CPER.
To understand the underlying complex beam diagnostic often large numbers of single-shot measurements must be acquired continuously over a long time with extremely high temporal resolution. Photonic time-stretch is a measurement method that is able to overcome speed limitations of con- ventional digitizers and enable continuous ultra-fast single- shot terahertz spectroscopy with refresh rates of trillions of consecutive frames. In this contribution, a novel ultra- fast data sampling system based on photonic time-stretch is presented and the performance is discussed. THERESA (TeraHErtz REadout SAmpling) is a data acquisition system based on the recent ZYNQ-RFSoC family. THERESA has been developed with an analog bandwidth up to 20 GHz and a sampling rate up to 90 GS/s. When combined with the photonic time-stretch setup, the system will be able to sample a THz signal with an unprecedented frame rate of 8 TS/s. Continuous acquisition for long observation times will open up new possibilities in the detection of rare events in accelerator physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT017  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT018 Advancing to a GHz Transition Radiation Monitor for Longitudinal Charge Distribution Measurements 267
 
  • S. Klaproth, A. Penirschke
    THM, Friedberg, Germany
  • H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • T. Reichert, R. Singh
    GSI, Darmstadt, Germany
 
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE)
In the past, longitudinal beam profiles have been measured with e.g., Feschenko monitors*, Fast Faraday Cups (FFC)** and field monitors. Feschenko monitors usually examine an average shape over several pulses and FFCs are interceptive devices by design. In this work we want to present the progress in the development of a novel GHz diffraction radiation monitor which shall be able to measure the longitudinal charge distribution of single bunches within Hadron beam LINACS non-destructively. A proof-of-concept measurement has been performed at GSI. We aim for a resolution of 50 to 100ps at beam energies of β=0.05 to 0.74. electronic field simulations were performed using CST Particle Studio to determine an optimal RF-Window, which also suits as vacuum chamber and the beam energy and angular dependencies of the diffraction radiation for different materials were analyzed.
* A. V. Feschenko (2001): Methods and Instrumentation for Bunch Shape Measurements. In Proc. PAC’01, paper ROAB002
** G. Zhu et al (2018): Rev. Sci. Instrum. issn 0034-6748, doi :10.1063/1.5027608
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT018  
About • Received ※ 14 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT019 Wakefield Studies for a Bunch Arrival-Time Monitor Concept with Rod-Shaped Pickups on a Printed Circuit Board for X-Ray Free-Electron Lasers 271
 
  • B.E.J. Scheible, A. Penirschke
    THM, Friedberg, Germany
  • W. Ackermann, H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M.K. Czwalinna, H. Schlarb
    DESY, Hamburg, Germany
 
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) under contract No. 05K19RO1.
The European XFEL (EuXFEL) and other notable X-ray Free-Electron Laser facilities rely on an all-optical synchronization system with electro-optical bunch arrival-time monitors (BAM). The current BAMs were benchmarked with a resolution of 3.5 fs for nominal 250 pC bunches at the EuXFEL, including jitter of the optical reference system. The arrival-time jitter could be reduced to about 10 fs with a beam-based feedback system. For future experiments at the EuXFEL the bunch charge will be decreased to a level where the existing system’s accuracy will no longer be sufficient. In simulations a concept based on rod-shaped pickups mounted on a printed circuit board indicated its potential for such low charge applications. For the feasibility of the proposed design, its contribution to the total impedance is essential. In this work the design and an intermediate version are compared to state-of-the-art BAM regarding their wake potential. Furthermore, measures to mitigate wakefields are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT019  
About • Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 05 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT020 Longitudinal Phase Space Diagnostics with Corrugated Structure at the European XFEL 275
 
  • S. Tomin, W. Decking, N. Golubeva, A.I. Novokshonov, T. Wohlenberg, I. Zagorodnov
    DESY, Hamburg, Germany
 
  Characterization of the longitudinal phase space (LPS) of the electron beam after the FEL process is important for its study and tuning. At the European XFEL, a single plate corrugated structure was installed after the SASE2 undulator to measure the LPS of the electron beam. The beam passing near the plate’s corrugations creates wakefields, which induce a correlation between time and the transverse distribution of the beam. The longitudinal phase space of the beam is then analyzed on a scintillating screen monitor placed in the dispersion section. In this paper, we present the result of commissioning the corrugated structure and the first LPS measurement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT020  
About • Received ※ 12 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT021 5D Tomography of Electron Bunches at ARES 279
SUSPMF088   use link to see paper's listing under its alternate paper code  
 
  • S. Jaster-Merz, R.W. Aßmann, R. Brinkmann, F. Burkart, T. Vinatier
    DESY, Hamburg, Germany
  • R.W. Aßmann
    LNF-INFN, Frascati, Italy
  • S. Jaster-Merz
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  The ARES linear accelerator at DESY aims to deliver stable and well-characterized electron bunches with durations down to the sub-fs level. Such bunches are highly sought after to study the injection into novel high-gradient accelerating structures, test diagnostics devices, or perform autonomous accelerator studies. For such applications, it is advantageous to have a complete and detailed knowledge of the beam properties. Tomographic methods have shown to be a key tool to reconstruct the phase space of beams. Based on these techniques, a novel diagnostics method is being developed to resolve the full 5-dimensional phase space (x,x’,y,y’,z) of bunches including their transverse and longitudinal distributions and correlations. In simulation studies, this method shows an excellent agreement between the reconstructed and the original distribution for all five planes. Here, the 5-dimensional phase space tomography method is presented using a showcase simulation study at ARES.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT021  
About • Received ※ 03 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT022 Beam Dynamics of the Transparent Injection for the MAX IV 1.5 GeV Ring 284
 
  • M. Apollonio, Å. Andersson, M. Brosipresenter, D.K. Olsson, P.F. Tavares, A.S. Vorozhtsov
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Following the successful operation of the Multipole Injection Kicker (MIK) in the MAX IV 3 GeV storage ring, we plan to introduce a similar device in the MAX IV 1.5 GeV ring. In order to assess the effectiveness of such device and to define its working parameters, we performed a series of studies aimed at understanding the beam dynamics related to the injection process. In this paper we describe the optimization of the MIK working parameters, we study the resilience to tune shifts for a chosen injection scheme and illustrate some tests conducted to evaluate the ring acceptance. We conclude with remarks about the effects of magnet errors on key performance parameters such as the injection efficiency and perturbations to the size and divergence of the stored beam and a brief discussion on future work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT022  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 29 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT023 Improved Emittance and Brightness for the MAX IV 3 GeV Storage Ring 288
 
  • M. Apollonio, Å. Andersson, M. Brosipresenter, R. Lindvall, D.K. Olsson, M. Sjöström, R. Svärd, P.F. Tavares
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  At MAX IV Laboratory, the Swedish Synchrotron Radiation (SR) facility, the largest of two rings operates at 3 GeV with a bare lattice emittance of 330 pm rad. Upgrade plans are under consideration aiming at a gradual reduction of the emittance, in three stages: a short-term with an emittance reduction of 20% to 40%, a mid-term with an emittance reduction of more than 50% and a long-term with an emittance in the range of the diffraction limit for hard X-rays (10 keV). In this paper we focus on the short-term case, resuming previous work on a proposed lattice that can reach 270 pm rad emittance, with only minor modifications to the gradients of the magnets of the present ring, i.e. without any hardware changes and all within the present power supply limits. Linear lattice characterisation and calculations of key performance parameters, such as dynamic aperture and momentum aperture with errors, are described and compared to the present operating lattice. Experimental tests of injection into this lattice are also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT023  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 27 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT024 Measuring the Coherent Synchrotron Radiation Far Field with Electro-Optical Techniques 292
 
  • C. Widmann, M. Brosipresenter, E. Bründermann, S. Funkner, A.-S. Müller, M.J. Nasse, G. Niehues, M.-D. Noll, M.M. Patil, M. Reißig, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • M. Brosipresenter
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: M. M. P. acknowledges the support by the DFG-funded Doctoral School KSETA. C. W. achnowledges funding by BMBF contract number 05K19VKD.
For measuring the temporal profile of the coherent synchrotron radiation (CSR) a setup based on electro-optical spectral decoding (EOSD) will be installed as part of the sensor network at the KIT storage ring KARA (Karlsruhe Research Accelerator). The EOSD technique allows a single-shot, phase sensitive measurement of the complete spectrum of the CSR far field radiation at each turn. Therefore, the dynamics of the bunch evolution, e.g. the microbunching, can be observed in detail. Especially, in synchronized combination with the already established near-field EOSD, this method could provide deeper insights in the interplay of bunch profile and CSR generation for each individual electron bunch. For a successful implementation of the EOSD single shot setup, measurements with electro-optical sampling (EOS) are performed. With EOS the THz pulse shape is scanned over several turns by shifting the delay of laser and THz pulse. In this contribution different steps towards the installation of the EOSD far field setup are summarized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT024  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT025 Development of an Electro-Optical Longitudinal Bunch Profile Monitor at KARA Towards a Beam Diagnostics Tool for FCC-ee 296
 
  • M. Reißig, M. Brosipresenter, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, G. Niehues, M.M. Patil, R. Ruprecht, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: The Future Circular Collider Innovation Study (FCCIS) project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 951754. M. R. and M. M. P. acknowledge the support by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology". C. W. achnowledges funding by BMBF contract number 05K19VKD.
The Karlsruhe Research Accelerator (KARA) at KIT features an electro-optical (EO) near-field diagnostics setup to conduct turn-by-turn longitudinal bunch profile measurements in the storage ring using electro-optical spectral decoding (EOSD). Within the Future Circular Collider Innovation Study (FCCIS) an EO monitor using the same technique is being conceived to measure the longitudinal profile and center-of-charge of the bunches in the future electron-positron collider FCC-ee. This contribution provides an overview of the EO near-field diagnostics at KARA and discusses the development and its challenges towards an effective beam diagnostics concept for the FCC-ee.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT025  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT026 Beam Diagnostics for the Storage Ring of the cSTART Project at KIT 300
 
  • D. El Khechen, E. Bründermann, A. Mochihashi, A.-S. Müller, M.-D. Noll, A.I. Papash, R. Ruprecht, P. Schreiberpresenter, M. Schuh, J.L. Steinmann
    KIT, Karlsruhe, Germany
 
  In the framework of the compact STorage ring for Accelerator Research and Technology (cSTART) project, which will be realized at Karlsruhe Institute of Technology (KIT), a Very Large Acceptance compact Storage Ring (VLA-cSR) is planned to study the injection and the storage of 50 MeV, ultra-short (sub-ps) electron bunches from a laser plasma accelerator (LPA) and the linac-based test facility FLUTE. For such a storage ring, where a single bunch with a relatively wide range of bunch charge (1 pC - 1000 pC ) and energy spread (10’4 - 10’2) will circulate at a relatively high revolution frequency (7 MHz), the choice of beam diagnostics is very delicate. In this paper, we would like to discuss several beam diagnostics options for the storage ring and to briefly report on several tests that have been or are planned to be realized in our existing facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT026  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT027 Transverse and Longitudinal Profile Measurements at the KARA Booster Synchrotron 304
 
  • D. El Khechen, E. Blomley, E. Bründermann, E. Huttel, A. Mochihashi, A.-S. Müller, M.-D. Noll, R. Ruprecht, P. Schreiberpresenter, M. Schuh, J.L. Steinmann, C. Widmann
    KIT, Karlsruhe, Germany
 
  In the booster synchrotron of the Karlsruhe Research Accelerator (KARA), the beam is injected from the microtron at 53 MeV and ramped up to 500 MeV. Though the injected beam current from the microtron to the booster seems good, the injection efficiency into the booster is currently low due to various effects. Consequently, an upgrade of the whole beam diagnostics system is taking place in the booster, in order to improve the injection efficiency through understanding the loss mechanisms and the behavior of bunches. Among these diagnostics tools are beam loss monitors, a transverse profile monitor and a longitudinal profile monitor. In this paper, we will describe the setups used for bunch profile measurements in both transverse and longitudinal planes and report on first data analysis results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT027  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT028 Beam Diagnostics and Instrumentation for MESA 307
 
  • M. Dehn, K. Aulenbacher, J. Diefenbach, F. Fichtner, P. Heil, R.G. Heine, R.F.K. Kempf, C. Matejcek
    IKP, Mainz, Germany
  • C.L. Loreypresenter
    KPH, Mainz, Germany
 
  Funding: Work supported by PRISMA and the German federal state of Rheinland-Pfalz
For the new Mainz Energy recovering Superconducting Accelerator (MESA) a wide range of beam currents is going to be used during machine optimization and for the physics experiments. To be able to monitor beam parameters like beam current, phases and beam positions several different kinds of beam instrumentation is foreseen. Some components have already been tested at the Mainz Microtron (MAMI) and others have been used at the MELBA test accelerator. In this paper we will present the current status of the instrumentation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT028  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT029 Longitudinal Phase Space Benchmarking for PITZ Bunch Compressor 310
 
  • A. Lueangaramwong, Z. Aboulbanine, G.D. Adhikari, N. Aftab, P. Boonpornprasert, G.Z. Georgiev, J. Good, M. Groß, C. Koschitzki, M. Krasilnikov, X.-K. Li, O. Lishilin, D. Melkumyan, H.J. Qian, G. Shu, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • N. Chaisueb
    Chiang Mai University, Chiang Mai, Thailand
 
  The longitudinal phase space characteristics of space-charge dominated electron beams are keys to achieving bunch compression for the accelerator-based THz source at the Photo Injector Test facility at DESY in Zeuthen (PITZ). Such a THz source is proposed as a prototype for an accelerator-based THz source for pump-probe experiments at the European XFEL. A start-to-end simulation has suggested the settings of the phase of booster linear accelerator manipulating longitudinal beam characteristics to optimize the performance of the THz FEL. Although beam diagnostics after compression at PITZ are limited, the longitudinal beam characteristics as a function of the booster phase have been measured and compared with the corresponding simulations. The benchmark involves measurements of longitudinal phase space distribution for bunch charges up to 2 nC. The measurement technique assigned uses 50-um slits to achieve higher momentum and time resolution (1.8 keV/c and 0.5 ps, respectively).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT029  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT031 Renovation of the SR Beam Profile Monitors with Novel Polycrystalline Diamond Mirrors at the SuperKEKB Accelerator 313
 
  • G. Mitsuka, H. Ikeda, T.M. Mitsuhashi
    KEK, Ibaraki, Japan
 
  SR beam profile monitors are fundamental to perform the stable beam operation of SuperKEKB. To suppress thermal deformation of SR extraction mirrors–a long-standing issue in SR monitors–, we developed platinum coated diamond mirrors in 2019. The diamond mirrors are made with optical-quality polycrystal-diamond-substrate with extremely large thermal conductivity, and have a size of 20 mm (W) x 30 mm (H) x 2 mm (D). Surface flatness better than λ/5 was observed in an optical testing with a laser interferometer. The diamond mirrors have been installed in HER and LER in 2020 summer and 2021 summer, respectively. Through irradiation for an year at the beam current greater than 800 mA, no significant deformation of the diamond mirrors has been observed. In this talk, we will discuss the design, construction, and optical testing of the polycrystal diamond mirrors. Also beam measurements performed using an interferometer, a coronagraph, a streak camera, and a fast gate camera will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT031  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT032 Improvement of Matching Circuit for J-PARC Main Ring Injection Kicker Magnet 316
 
  • T. Sugimoto, K. Ishii, S. Iwata, H. Matsumoto, T. Shibatapresenter
    KEK, Ibaraki, Japan
 
  In this paper, present status of improvements of the impedance matching circuit for the J-PARC main ring injection kicker magnet to achieve 1.3MW beam operation planed after 2022 is described. In order to reduce the temperature-rise of resistors under the higher repetition rate pulse excitation, number of paralleled resistors was doubled and volume of each resistor was enlarged 2.6 times. Ceramic-made beads with diameter of 3 mm were filled in the cylinder of the resistor to increase the heat conductivity. An aluminum-made water-cooled heat sink was attached to the resistors directly and an air-cooling fan was mounted to the side of the box containing the resistors. All resistors and their support structure have been replaced in March 2022. Temperature-rise of resistors during continuous pulse excitation was measured by commercial thermo camera and compared with numerical calculations. In addition, predictions about the beam induced heating of the resistors are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT032  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT033 Study of Cherenkov Diffraction Radiation for Beam Diagnostics 320
 
  • H. Hama, K. Nanbupresenter
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  Cherenkov diffraction radiation (ChDR) has been paid attention to non-beam-destructive diagnostics in these years. However, the physical understanding of ChDR is not well satisfied yet because of precise experimental observation is not much easier than one expects. Although we do not deny the Cherenkov radiation and ChDR are fully explained by the classical electromagnetics, we encounter a couple of difficulties in actual applications. For instance, the theory is usually established for the far-field observation, in spite of that the radiation is often observed near-field in the realistic beam diagnostic tools employing photon measurements. In addition, the theory, as a matter of course, includes some assumptions which is sometimes not valid for the specific experiments. We have carried out experiments for observation of coherent ChDR in THz frequency region by a using 100 femtosecond electron beam supplied by the t-ACTS accelerator at Tohoku University. In a flame work of this study an FDTD simulation in the large space has been developed as well. In this presentation, we will show the experimental results comparing with both the theory and the simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT033  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT034 Surrogate-Based Bayesian Inference of Transverse Beam Distribution for Non-Stationary Accelerator Systems 324
 
  • H. Fujii, N. Fukunishi
    RIKEN Nishina Center, Wako, Japan
  • M. Yamakita
    Tokyo Tech, Tokyo, Japan
 
  Constraints on the beam diagnostics available in real-time and time-varying beam source conditions make it difficult to provide users with high-quality beams for long periods without interrupting experiments. Although surrogate model-based inference is useful for inferring the unmeasurable, the system states can be incorrectly inferred due to manufacturing errors and neglected higher-order effects when creating the surrogate model. In this paper, we propose to adaptively assimilate the surrogate model for reconstructing the transverse beam distribution with uncertainty and underspecification using a sequential Monte Carlo from the measurements of quadrant beam loss monitors. The proposed method enables sample-efficient and training-free inference and control of the time-varying transverse beam distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT034  
About • Received ※ 19 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT037 Beam Measurement and Application of the Metal Vapor Vacuum Arc Ion Source at KOMAC 328
 
  • S.H. Lee, H.S. Kim, H.-J. Kwonpresenter
    KOMAC, KAERI, Gyeongju, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by MSIT (Ministry of Science and ICT) and the NRF (National Research Foundation) of Korea grant fund the Korea government (MSIT).
The metal ion beam facility is developed based on the MEVVA* ion source at the KOMAC**. The MEVVA ion source has advantage that it can be extract almost metal ion species as well as high current ion beam. After the installation, we measured beam properties such as peak beam current, beam profile depending on the operation condition. The average charge state is measured in order to estimate the total dose. We evaluate the beam stability through the long-term beam extraction, and the measured the cathode erosion rate too. In addition, as one of the application fields, we irradiate the metal beam on the cathode of the fuel cell and measured the performance. In this paper, the beam measurement results, are summarized and fuel cell performances after metal beam irradiation are discussed.
*Korea Multi-purpose of Accelerator Complex
**Metal Vapor Vacuum Arc
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT037  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT038 Development of Button BPM Electronics for the Bunch by Bunch Feedback System of 4GSR 332
 
  • S.W. Jang
    KUS, Sejong, Republic of Korea
 
  With the advent of the fourth-generation storage ring, the size of the vertical emittance of the electron beam is expected to be about 100 times smaller than that of the existing generation. In line with the development of accelerator performance, the resolution of the beam position monitor(BPM) should also be further improved, and it can be provide a more stable and uniform beam to end station users through improved bunch by bunch(BbB) feedback system compared to a system called turn by turn or fast feedback. A developed BPM electronics for BbB feedback will be installed in Bessy II booster ring at HZB Research Institute in Germany. BbB feedback BPM electronics with an improved three button BPMs will be used to measure beam position resolution and calculate an information for BbB feedback and then it will apply to the BbB feedback system. In this proceeding, we will describe the development of an upgraded beam position monitor and BPM electronics for BbB feedback.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT038  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT040 Summary of the Post-Long Shutdown 2 LHC Hardware Commissioning Campaign 335
 
  • A. Apollonio, O.Ø. Andreassen, A. Antoine, T. Argyropoulos, M.C. Bastos, M. Bednarek, B. Bordini, K. Brodzinski, A. Calia, Z. Charifoulline, G.-J. Coelingh, G. D’Angelo, D. Delikaris, R. Denz, L. Fiscarelli, V. Froidbise, M.A. Galilée, J.C. Garnier, R. Gorbonosov, P. Hagen, M. Hostettler, D. Jacquet, S. Le Naour, D. Mirarchi, V. Montabonnet, B.I. Panev, T.H.B. Persson, T. Podzorny, M. Pojer, E. Ravaioli, F. Rodriguez-Mateos, A.P. Siemko, M. Solfaroli, J. Spasic, A. Stanisz, J. Steckert, R. Steerenberg, S. Sudak, H. Thiesen, E. Todesco, G. Tradpresenter, J.A. Uythoven, S. Uznanski, A.P. Verweij, J. Wenninger, G.P. Willering, D. Wollmann, S. Yammine
    CERN, Meyrin, Switzerland
  • V. Vizziello
    INFN/LASA, Segrate (MI), Italy
 
  In this contribution we provide a summary of the LHC hardware commissioning campaign following the second CERN Long Shutdown (LS2), initially targeting the nominal LHC energy of 7 TeV. A summary of the test procedures and tools used for testing the LHC superconducting circuits is given, together with statistics on the successful test execution. The paper then focuses on the experience and observations during the main dipole training campaign, describing the encountered problems, the related analysis and mitigation measures, ultimately leading to the decision to reduce the energy target to 6.8 TeV. The re-commissioning of two powering sectors, following the identified problems, is discussed in detail. The paper concludes with an outlook to the future hardware commissioning campaigns, discussing the lessons learnt and possible strategies moving forward.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT040  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT041 Artificial Intelligence-Assisted Beam Distribution Imaging Using a Single Multimode Fiber at CERN 339
 
  • G. Trad, S. Burger
    CERN, Meyrin, Switzerland
 
  In the framework of developing radiation tolerant imaging detectors for transverse beam diagnostics, the use of machine learning powered imaging using optical fibers is explored for the first time at CERN. This paper presents the pioneering work of using neural networks to reconstruct the scintillating screen beam image transported from a harsh radioactive environment over a single, large-core, multimode, optical fiber. Profiting from generative modeling used in image-to-image translation, conditional adversarial networks have been trained to translate the output plane of the fiber, imaged on a CMOS camera, into the beam image imprinted on the scintillating screen. Theoretical aspects, covering the development of the dataset via geometric optics simulations, modeling the image propagation in a simplified model of an optical fiber, and its use for training the network are discussed. Finally, the experimental setups, both in the laboratory and at the CLEAR facility at CERN, used to validate the technique and evaluate its potential are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT041  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT042 Recent AWAKE Diagnostics Development and Operational Results 343
 
  • E. Senes, S. Burger, M. Krupa, T. Lefèvre, S. Mazzoni, E. Poimenidou, A. Topaloudis, M. Wendt, G. Zevi Della Porta
    CERN, Meyrin, Switzerland
  • P. Burrows, C. Pakuza
    JAI, Oxford, United Kingdom
  • P. Burrows, C. Pakuza
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • D.A. Cooke
    UCL, London, United Kingdom
  • J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The Advanced Wakefield Experiment (AWAKE) at CERN investigates the Plasma-Wakefield acceleration of electrons driven by a relativistic proton bunch. After successfully demonstrating the acceleration process in the AWAKE Run 1, the experiment has now started the Run 2. The AWAKE Run 2 consists of several experimental periods that aim to demonstrate the feasibility of the AWAKE concept beyond the acceleration experiment, showing its feasibility as accelerator for particle physics application. As part of these developments, a dramatic effort in improving the AWAKE instrumentation is sustained. This contribution reports on the current developments of the instrumentation pool upgrade, including the digital camera system for transverse beam profile measurement, beam halo measurement and the spectrometer upgrade studies. The studies on the development of high-frequency beam position monitors are also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT042  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT043 Recent Developments in Longitudinal Phase Space Tomography 347
 
  • S.C.P. Albright, A. Lasheen
    CERN, Meyrin, Switzerland
  • C.H. Grindheim
    NTNU, Trondheim, Norway
  • A.H.C. Lu
    KTH/NADA, Stockholm, Sweden
 
  Longitudinal phase space tomography has been a mainstay of longitudinal beam diagnostics in most of the CERN synchrotrons for over two decades. Originally, the reconstructions were performed by a highly optimised Fortran implementation. To facilitate increased flexibility, and leveraging the significant increase in computing power since the original development, a new version of the reconstruction code has been developed. This implements an object-oriented Python API, with the computationally heavy calculations in C++ for improved performance. The Python/C++ implementation is designed to be highly modular, enabling new and diverse use cases. For example, the macro-particle tracking for the tomography can now be performed externally, or a single set of tracked particles can be reused for multiple reconstructions. This paper summarises the features of the new implementation, and some of the key applications that have been enabled as a result.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT043  
About • Received ※ 30 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT045 Beam Loss Localisation with an Optical Beam Loss Monitor in the CLEAR Facility at CERN 351
SUSPMF091   use link to see paper's listing under its alternate paper code  
 
  • S. Benítez Berrocal, E. Effinger, J.C. Esteban Felipe, W. Farabolini, P. Korysko, A.T. Lernevall, B. Salvachúa
    CERN, Meyrin, Switzerland
  • M. Chen
    University of Huddersfield, Huddersfield, United Kingdom
 
  A prototype of a Beam Loss Monitor based on the detection of Cherenkov light in optical fibres is being developed to measure beam losses in the CERN Super Proton Synchrotron. Several testing campaigns have been planned to benchmark the simulations of the system and test the electronics in the CLEAR facility at CERN. During the first campaigns, the emission of Cherenkov light inside optical fibres and the photodetector characterisation were studied. Fibre-based Beam Loss monitors continuously monitor beam losses over long distances. The localisation of the beam loss could be calculated from the timing of the signals generated by the photosensors coupled at both ends of the optical fibre. The experimental results of an optical fibre Beam Loss Monitor installed in the CLEAR facility are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT045  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT046 Linearity and Response Time of the LHC Diamond Beam Loss Monitors in the CLEAR Beam Test Facility at CERN 355
SUSPMF092   use link to see paper's listing under its alternate paper code  
 
  • S. Morales Vigo, E. Calvo Giraldo, L.A. Dyks, E. Effinger, W. Farabolini, P. Korysko, A.T. Lernevall, B. Salvachúa, C. Zamantzas
    CERN, Meyrin, Switzerland
  • S. Morales Vigo, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Chemical Vapour Deposition (CVD) diamond detectors have been tested during the Run 2 operation period (2015-2018) as fast beam loss monitors for the Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) at CERN. However, the lack of raw data recorded during this operation period restrains our ability to perform a deep analysis of their signals. For this reason, a test campaign was carried out at the CLEAR beam test facility at CERN with the aim of studying the linearity and response time of the diamond detectors against losses from electron beams of different intensities. The signal build-up from multi-bunched electron beams was also analyzed. The conditions and procedures of the test campaign are explained, as well as the most significant results obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT046  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT047 Experimental Demonstration of Machine Learning Application in LHC Optics Commissioning 359
 
  • E. Fol, F.S. Carlier, J. Dilly, M. Hofer, J. Keintzel, M. Le Garrec, E.H. Maclean, T.H.B. Persson, F. Soubelet, R. Tomás García, A. Wegscheider
    CERN, Meyrin, Switzerland
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  Recently, we conducted successful studies on the suitability of machine learning (ML) methods for optics measurements and corrections, incorporating novel ML-based methods for local optics corrections and reconstruction of optics functions. After performing extensive verifications on simulations and past measurement data, the newly developed techniques became operational in the LHC commissioning 2022. We present the experimental results obtained with the ML-based methods and discuss future improvements. Besides, we also report on improving the Beam Position Monitor (BPM) diagnostics with the help of the anomaly detection technique capable to identify malfunctioning BPMs along with their possible fault causes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT047  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT048 Design of a Prototype Gas Jet Profile Monitor for Installation Into the Large Hadron Collider at CERN 363
 
  • R. Veness, M. Ady, C. Castro Sequeiro, T. Lefèvre, S. Mazzoni, I. Papazoglou, A. Rossi, G. Schneider, O. Sedláček, K. Sidorowski
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • N. Kumar, A. Salehilashkajani, O. Sedláček, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N. Kumar, A. Salehilashkajani, O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  The Beam-Gas Curtain or BGC is the baseline instrument for monitoring the concentricity of the LHC proton beam with a hollow electron beam for the hollow e-lens (HEL) beam halo suppression device which is part of the High-Luminosity LHC upgrade. The proof-of-principles experiments of this gas-jet monitor have now been developed into a prototype instrument which has been built for integration into the LHC ring and is now under phased installation for operation in the upcoming LHC run. This paper describes the challenges overcome to produce a gas-jet fluorescence monitor for the ultra-high vacuum accelerator environment. It also presents preliminary results from the installation of the instrument at CERN.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT048  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT049 Study on Energy Spectrum Measurement of Electron Beam for Producing MIR-FEL at PBP-CMU Electron Linac Laboratory 367
SUSPMF093   use link to see paper's listing under its alternate paper code  
 
  • P. Kitisri, S. Rimjaem, K. Techakaew
    Chiang Mai University, Chiang Mai, Thailand
  • S. Rimjaem
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
 
  At the PBP-CMU Electron Linac Laboratory (PCELL), we aim to produce a mid-infrared free-electron laser (MIR-FEL) for pump-probe experiments in the future. The electron beam is generated from a thermionic cathode radio-frequency (RF) gun with a 1.5-cell cavity before going to an alpha magnet. In this section, some part of the beam is filtered out by using energy slits. The selected part of the beam is then further accelerated by an RF linear accelerator (linac) to get higher energy. This work focuses on the measurement of energy spectrum of electron beam for producing mid-infrared free-electron laser (MIR-FEL). Since our bunch compressor (BC) for the MIR-FEL beamline is an achromat system, the longitudinal distributions of electron beam at the entrance and the exit of the BC are almost the same. Thus, we can measure the longitidinal properties of the beam before it travels to the BC. By using a dipole magnet and a Faraday cup with a slit, we can measure energy spectrum of electron beam before entering the BC. In this study, the ASTRA code is used to investigate the properties of electron beam as well as to design the measuring system. The design results including systematic error of the measuring system are presented and discussed in this contribution. The results from this work can be used as the guideline for the measuring system construction as well as the beam operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT049  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT050 Systematic Study of Electron Beam Measuring Systems at the PBP-CMU Electron Linac Laboratory 371
SUSPMF094   use link to see paper's listing under its alternate paper code  
 
  • K. Techakaew, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
 
  The linear accelerator system at the PBP-CMU Electron Linac Laboratory (PCELL) is used to produce electron beam with suitable properties for generating coherent teragertz (THz) radiation and mid-infrared free-electron laser (MIR FEL). Optimization of machine parameters to produce short electron bunches with low energy spread and low transverse emittance was focused in this study. We conducted ASTRA simulations including three-dimentional (3D) space charge algorithm and 3D field distributions for radio-frequency (RF) electron gun and all magnets to develop measuring systems. Electron beam energy and energy spread were investigated downstream the RF gun and the RF linac using an alpha magnet and a dipole spectrometer, respectively. The transverse beam emittance was studied using the quadrupole scan technique. By filtering proper portion of electrons before entering the linac, the beam with average energy of 20 MeV and energy spread of 0.1-1% can be achieved for a bunch charge of 100 pC. The systematic error is less than 10% for measuring average energy and energy spread while it is less than 31% for measuring transverse emittance when placing the screen of at least 1.0 m behind the scanning quadrupole magnet. The results of this study were used to develop the measuring setups in our system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT050  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT051 Optical Fiber Based Beam Loss Monitor for SPS Machine 374
 
  • T. Pulampong, W. Phacheerak, P. Sudmuang, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
 
  At the Siam Photon Source (SPS) beam loss monitors based on PIN diode have been used. The existing system allow beam loss detection very locally at the monitor position close to the vacuum chamber. For optical fiber, Cherenkov radiation can be detected when a lost particle travel in the fiber. Thus optical fiber based loss monitor with sufficient length can cover parts of the machine conveniently. Fast beam loss event can be detected with more accurate position. In this paper, the design and result of the optical fiber based beam loss monitor system at SPS machine are discussed. The system will be a prototype for the new 3 GeV machine SPS-II.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT051  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT052 Beam-Based Alignment for LCLS-II CuS Linac-to-Undulator Quadrupoles 377
 
  • X. Huang, D.K. Bohler
    SLAC, Menlo Park, California, USA
 
  An advanced method for beam-based alignment that can simultaneously determine the quadrupole centers of multiple magnets has been applied to the LCLS-II CuS linac-to-undulator (LTU) section. The new method modulates the strengths of multiple quadrupoles and monitor the induced trajectory shift. Measurements are repeated with the beam trajectory through the quadrupoles steered with upstream correctors, from which the quadrupole centers can be obtained. Steering of the trajectory to minimize the induced trajectory shift is also done for finding the quadrupole centers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT052  
About • Received ※ 27 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT053 A Beam Position Monitor for Electron Bunch Detection in the Presence of a More Intense Proton Bunch for the AWAKE Experiment 381
SUSPMF095   use link to see paper's listing under its alternate paper code  
 
  • C. Pakuza, P. Burrows
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • P. Burrows, C. Pakuza
    JAI, Oxford, United Kingdom
  • R. Corsini, W. Farabolini, P. Korysko, M. Krupa, T. Lefèvre, S. Mazzoni, E. Senes, M. Wendt
    CERN, Meyrin, Switzerland
 
  The Advanced Proton Driven Plasma Wakefield Experiment (AWAKE) at CERN uses 6 cm long proton bunches extracted from the Super Proton Synchrotron (SPS) at 400 GeV beam energy to drive high gradient plasma wakefields for the acceleration of electron bunches to 2 GeV within a 10 m length. Knowledge and control of the position of both copropagating beams is crucial for the operation of the experiment. Whilst the current electron beam position monitoring system at AWAKE can be used in the absence of the proton beam, the proton bunch signal dominates when both particle bunches are present simultaneously. A new technique based on the generation of Cherenkov diffraction radiation (ChDR) in a dielectric material placed in close proximity to the particle beam has been designed to exploit the large bunch length difference of the particle beams at AWAKE, 200 ps for protons versus a few ps for electrons, such that the electron signal dominates. Hence, this technique would allow for the position measurement of a short electron bunch in the presence of a more intense but longer proton bunch. The design considerations, numerical analysis and plans for tests at the CERN Linear Electron Accelerator for Research (CLEAR) facility are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT053  
About • Received ※ 20 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT054 A Modified Nomarski Interferometer to Study Supersonic Gas Jet Density Profiles 385
 
  • C. Swain, Ö. Apsimon, A. Salehilashkajani, C.P. Welsch, J. Wolfenden, H.D. Zhangpresenter
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Ö. Apsimon, A. Salehilashkajani, C. Swain, C.P. Welsch, J. Wolfenden, H.D. Zhangpresenter
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the AWAKE-UK phase II project grant No. ST/T001941/1, the STFC Cockcroft core grant No. ST/G008248/1 and the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1.
Gas jet-based non-invasive beam profile monitors, such as those developed for the high luminosity Large Hadron Collider (HL-LHC) upgrade, require accurate, high resolution methods to characterise the supersonic gas jet density profile. This paper proposes a modified Nomarski interferometer to non-invasively study the behaviour of these jets, with nozzle diameters of 1 mm or less in diameter. It discusses the initial design and results, alongside plans for future improvements. Developing systems such as this which can image on such a small scale allows for improved monitoring of supersonic gas jets used in several areas of accelerator science, thus allowing for improvements in the accuracy of experiments they are utilised in.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT054  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT055 A Gas Jet Beam Profile Monitor for Beam Halo Measurement 389
 
  • O. Stringer, N. Kumar, C.P. Welsch, H.D. Zhangpresenter
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, C.P. Welsch, H.D. Zhangpresenter
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1 and the STFC Cockcroft Institute core grant No. ST/G008248/1.
The gas jet beam profile monitor is a non-invasive beam monitor that is currently being commissioned at Cockcroft Institute. It utilises a supersonic gas curtain which transverses the beam at an angle of 45 degrees and measures beam-induced ionisation interactions of the gas to produce a 2D transverse beam profile image. This paper builds upon previously used single-slit skimmers and improves their ability to form the gas jet into a desired distribution for imaging beam halo. A skimmer device removes off-momentum gas particles and forms the jet into a dense thin curtain, suitable for transverse imaging of the beam. The use of a novel double-slit skimmer is shown to provide a mask-like void of gas over the beam core, increasing the relative intensity of the halo interactions for measurement. Such a non-invasive monitor would be beneficial to storage rings by providing real time beam characteristic measurements without affecting the beam. More specifically, beam halo behaviour is a key characteristic associated with beam losses within storage rings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT055  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT056 Commissioning of a Gas Jet Beam Profile Monitor for EBTS and LHC 393
 
  • H.D. Zhang, N. Kumar, A. Salehilashkajani, O. Sedláček, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Ady, T. Lefèvre, S. Mazzoni, I. Papazoglou, A. Rossi, G. Schneider, O. Sedláček, K. Sidorowski, R. Veness
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • N. Kumar, A. Salehilashkajani, O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the HL-LHC-UK II project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1.
A gas jet beam profile monitor was designed for measuring the electron beam at the electron beam test stand (EBTS) for the Hollow electron lens (HEL) and the proton beam in the large hadron collider (LHC). It is partially installed in the LHC during the second long shutdown. The current monitor is tailored to the accelerator environment including vacuum, geometry, and magnetic field for both the EBTS and the LHC. It features a compact design, a higher gas jet density, and a wider curtain size for a better integration time and a larger detecting range. In this contribution, the commissioning of this monitor at the Cockcroft Institute will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT056  
About • Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT057 Updates in Efforts to Data Science Enabled MeV Ultrafast Electron Diffraction System 397
 
  • S. Biedron, T.B. Bolin, M. Martínez-Ramón, S.I. Sosa Guitron
    UNM-ECE, Albuquerque, USA
  • M. Babzien, M.G. Fedurin, J.J. Li, M.A. Palmer
    BNL, Upton, New York, USA
  • S. Biedron
    UNM-ME, Albuquerque, New Mexico, USA
  • D. Martin, M.E. Papka
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by DOEs EPSCoR award DE-SC0021365, used resources of the Brookhaven National Laboratory’s Accelerator Test Facility and of the Argonne Leadership Computing Facility.
MeV ultrafast electron diffraction (MUED) is a pump-probe characterization technique to study ultrafast phenomena in materials with high temporal and spatial resolution. This complex instrument can be advanced into a turn-key, high-throughput tool with the aid of machine learning (ML) mechanisms and high-performance computing. The MUED instrument at the Accelerator Test Facility in Brookhaven National Laboratory was employed to test different ML approaches for both data analysis and control. We characterized different materials using MUED, mainly polycrystalline gold and single crystal Ta2NiS5. Diffraction patterns were acquired in single shot mode and convolutional neural network autoenconder models were evaluated for noise reduction and the reconstruction error was studied to identify anomalous diffraction patterns. Electron beam energy jitter was analyzed from single shot diffraction patterns to be used as a novel diagnostic tool. The MUED beamline was also simulated using VSim to construct a surrogate model for control of beam shape and energy. Progress towards ML-based controls leveraging off Argonne Leadership Computing Facility resources will also be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT057  
About • Received ※ 02 July 2022 — Accepted ※ 26 June 2022 — Issue date ※ 08 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT058 Machine Learning Training for HOM Reduction in a TESLA-Type Cryomodule at FAST 400
SUSPMF099   use link to see paper's listing under its alternate paper code  
 
  • J.A. Diaz Cruz
    UNM-ECE, Albuquerque, USA
  • J.A. Diaz Cruz, A.L. Edelen, B.T. Jacobson, J.P. Sikora
    SLAC, Menlo Park, California, USA
  • D.R. Edstrom, A.H. Lumpkin, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
 
  Low emittance electron beams are of high importance at facilities like the Linac Coherent Light Source II (LCLS-II) at SLAC. Emittance dilution effects due to off-axis beam transport for a TESLA-type cryomodule (CM) have been shown at the Fermilab Accelerator Science and Technology (FAST) facility. The results showed the correlation between the electron beam-induced cavity high-order modes (HOMs) and the Beam Position Monitor (BPM) measurements downstream the CM. Mitigation of emittance dilution can be achieved by reducing the HOM signals. Here, we present a couple of Neural Networks (NN) for bunch-by-bunch mean prediction and standard deviation prediction for BPMs located downstream the CM.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT058  
About • Received ※ 15 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT062 Foil Focusing Effect in Pepper-Pot Measurements in Intense Electron Beams 404
 
  • S. Szustkowski, M.A. Jaworski, D.C. Moir
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy (Contract No. 89233218CNA000001).
Thin conducting foils, such as pepper-pot masks, perpendicular to an oncoming intense electron beam acts like an imperfect axisymmetric lens. The beamlets distribution from a pepper-pot mask varies based on if the mask hole radius is smaller or larger than the beams Debye length. Correcting for focusing effect is necessary for measuring transverse emittance with pepper-pot technique for intense electron beams. The Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Axis-I produces a 20 MeV, 2 kA, 80 ns FWHM electron beam for flash radiography. In this paper, we explore the effect of foil focusing due to various pepper-pot masks at DARHT Axis-I injector region from a 55 mm velvet cathode.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT062  
About • Received ※ 01 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT063 Reconstruction of Beam Parameters from Betatron Radiation Using Maximum Likelihood Estimation and Machine Learning 407
 
  • S. Zhang, G. Andonian, C.E. Hansel, P. Manwani, B. Naranjo, M.H. Oruganti, J.B. Rosenzweig, M. Yadavpresenter
    UCLA, Los Angeles, California, USA
  • Ö. Apsimon, C.P. Welsch, M. Yadavpresenter
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: US Department of Energy, Division of High Energy Physics, Contract No. DE-SC0009914 STFC Liver-pool Centre for Doctoral Training on Data Intensive Science, grant agreement ST/P006752/1
Betatron radiation that arises during plasma wakefield acceleration can be measured by a UCLA-built Compton spectrometer, which records the energy and angular position of incoming photons. Because information about the properties of the beam is encoded in the betatron radiation, measurements of the radiation can be used to reconstruct beam parameters. One method of extracting information about beam parameters from measurements of radiation is maximum likelihood estimation (MLE), a statistical technique which is used to determine unknown parameters from a distribution of observed data. In addition, machine learning methods, which are increasingly being implemented for different fields of beam diagnostics, can also be applied. We assess the ability of both MLE and other machine learning methods to accurately extract beam parameters from measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT063  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT066 Gas Sheet Diagnostics Using Particle in Cell Code 410
 
  • M. Yadav, P. Manwani, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • G. Andonian
    RadiaBeam, Santa Monica, California, USA
  • Ö. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • N.M. Cook, A. Diaw, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • N.P. Norvell
    UCSC, Santa Cruz, California, USA
 
  Funding: This work was supported by the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1 and DE-SC0019717.
When intense particle beam propagates in dense plasma or gas, ionization can yield valuable information on the drive beam properties. Impact ionization and tunnel ionization are the two ionization regimes that must be accounted for varying beam properties. Due to these ionization mechanisms, new plasma electrons are generated causing different instabilities, dependent on the dominant ionization process considered. In order to accomplish the ambitious experimental goals of sophisticated beam diagnostics using ionization imaging, careful studies on the different ionization regimes, and the cross-over periods, required. Here we will discuss the impact ionization using fully parallel PIC code OSIRIS. We focus on understanding the gas sheet ionization diagnostics for characterizing high intensity charged particle beams. We study the interaction of neutral gas with an electron beam and varying density. We will also investigate the principle of detecting photon emission, rather than direct primary ion imaging, from the ionization induced in the interaction between the gas jet and charged particle beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT066  
About • Received ※ 07 June 2022 — Revised ※ 19 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT067 Electron Beam Phase Space Reconstruction From a Gas Sheet Diagnostic 414
 
  • N.M. Cook, A. Diaw, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • G. Andonian
    RadiaBeam, Santa Monica, California, USA
  • N.P. Norvell
    UCSC, Santa Cruz, California, USA
  • M. Yadavpresenter
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0019717.
Next generation particle accelerators craft increasingly high brightness beams to achieve physics goals for applications ranging from colliders to free electron lasers to studies of nonperturbative QED. Such rigorous requirements on total charge and shape introduce diagnostic challenges for effectively measuring bunch parameters prior to or at interaction points. We report on the simulation and training of a non-destructive beam diagnostic capable of characterizing high intensity charged particle beams. The diagnostic consists of a tailored neutral gas curtain, electrostatic microscope, and high sensitivity camera. An incident electron beam ionizes the gas curtain, while the electrostatic microscope transports generated ions to an imaging screen. Simulations of the ionization and transport process are performed using the Warp code. Then, a neural network is trained to provide accurate estimates of the initial electron beam parameters. We present initial results for a range of beam and gas curtain parameters and comment on extensibility to other beam intensity regimes.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT067  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 10 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT069 A Data-Driven Beam Trajectory Monitoring at the European XFEL 418
 
  • A. Sulc, R. Kammering, T. Wilksen
    DESY, Hamburg, Germany
 
  Funding: This work was supported by HamburgX grant LFF-HHX-03 to the Center for Data and Computing in Natural Sciences (CDCS) from the Hamburg Ministry of Science, Research, Equalities and Districts.
Interpretation of data from beam position monitors is a crucial part of the reliable operation of European XFEL. The interpretation of beam positions is often handled by a physical model, which can be prone to modeling errors or can lead to the high complexity of the computational model. In this paper, we show two data-driven approaches that provide insights into the operation of the SASE beamlines at European XFEL. We handle the analysis as a data-driven problem, separate it from physical peculiarities and experiment with available data based only on our empirical evidence and the data.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT069  
About • Received ※ 06 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)