Keyword: impedance
Paper Title Other Keywords Page
MOPLXGD1 The SuperKEKB Has Broken the World Record of the Luminosity luminosity, injection, simulation, operation 1
 
  • Y. Funakoshi, T. Abe, K. Akai, Y. Arimoto, K. Egawa, S. Enomoto, H. Fukuma, K. Furukawa, N. Iida, H. Ikeda, T. Ishibashi, S.H. Iwabuchi, H. Kaji, T. Kamitani, T. Kawamoto, M. Kikuchi, T. Kobayashi, K. Kodama, H. Koiso, M. Masuzawa, K. Matsuoka, T. Mimashi, G. Mitsuka, F. Miyahara, T. Miyajima, T. Mori, A. Morita, S. Nakamura, T.T. Nakamura, K. Nakanishi, H.N. Nakayama, M. Nishiwaki, S. Ogasawara, K. Ohmi, Y. Ohnishi, N. Ohuchi, T. Okada, T. Oki, M.A. Rehman, Y. Seimiya, K. Shibata, Y. Suetsugu, H. Sugimoto, H. Sugimura, M. Tawada, S. Terui, M. Tobiyama, R. Ueki, X. Wang, K. Watanabe, S.I. Yoshimoto, T. Yoshimoto, D. Zhou, X. Zhou, Z.G. Zong
    KEK, Ibaraki, Japan
  • A. Natochii
    University of Hawaii, Honolulu,, USA
  • K. Oide
    CERN, Meyrin, Switzerland
  • R.J. Yang
    CAEP/IAE, Mianyang, Sichuan, People’s Republic of China
  • K. Yoshihara
    Nagoya University, Nagoya, Aichi, Japan
 
  The SuperKEKB broke the world record of the luminosity in June 2020 in the Phase 3 operation. The luminosity has been increasing since then and the present highest luminosity is 4.65 x 1034 cm-2s-1 with βy* of 1 mm. The increase of the luminosity was brought with an application of crab waist, by increasing beam currents and by other improvements in the specific luminosity. In this paper, we describe what we have achieved and what we are struggling with. Finally, we mention a future plan briefly.  
slides icon Slides MOPLXGD1 [6.235 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPLXGD1  
About • Received ※ 10 June 2022 — Accepted ※ 08 July 2022 — Issue date ※ 10 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOOYSP2 Measurements of Collective Effects Related to Beam Coupling Impedance at SIRIUS storage-ring, synchrotron, simulation, coupling 34
 
  • F.H. de Sá, M.B. Alves, L. Liu
    LNLS, Campinas, Brazil
 
  Sirius is the new storage-ring-based 4th generation synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS) at the Brazilian Center for Research in Energy and Materials (CNPEM). In ultralow emittance storage rings such as Sirius, the small radius of the vacuum chamber gives rise to strong beam coupling impedances which significantly alter the stored beam dynamics. In this work, we present the single-bunch measurements made so far to characterize such effects and compare the results with those simulated using the impedance budget built during the storage ring design.  
slides icon Slides MOOYSP2 [2.496 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOYSP2  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST037 Characterisation of Bunch-by-Bunch Tune Shift Effects in the CERN SPS simulation, injection, electron, kicker 148
 
  • I. Mases Solé, H. Bartosik, V. Kain, K. Paraschou, M. Schenk, C. Zannini
    CERN, Meyrin, Switzerland
 
  After the implementation of major upgrades as part of the LHC Injector Upgrade Project (LIU), the Super Proton Synchrotron (SPS) delivers high intensity bunch trains with 25 ns bunch spacing to the Large Hadron Collider (LHC) at CERN. These beams are exposed to several collective effects in the SPS, such as beam coupling impedance, space charge and electron cloud, leading to relatively large bunch-by-bunch coherent and incoherent tune shifts. Tune correction to the nominal values at injection is crucial to ensure beam stability and good beam transmission. During the beam commissioning of the SPS, measurements of the bunch-by-bunch coherent tune shifts have been conducted under different beam conditions, together with appropriate corrections of the average tunes at each injection. In this paper, we describe the methodology that has been developed to acquire bunch-by-bunch position data and to perform online computations of the coherent tune spectra of each bunch using refined Fourier transform analysis. The experimental data are compared to multiparticle tracking simulations using the SPS impedance model, in view of developing an accurate model for tune correction in the SPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST037  
About • Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT032 Improvement of Matching Circuit for J-PARC Main Ring Injection Kicker Magnet kicker, operation, injection, simulation 316
 
  • T. Sugimoto, K. Ishii, S. Iwata, H. Matsumoto, T. Shibata
    KEK, Ibaraki, Japan
 
  In this paper, present status of improvements of the impedance matching circuit for the J-PARC main ring injection kicker magnet to achieve 1.3MW beam operation planed after 2022 is described. In order to reduce the temperature-rise of resistors under the higher repetition rate pulse excitation, number of paralleled resistors was doubled and volume of each resistor was enlarged 2.6 times. Ceramic-made beads with diameter of 3 mm were filled in the cylinder of the resistor to increase the heat conductivity. An aluminum-made water-cooled heat sink was attached to the resistors directly and an air-cooling fan was mounted to the side of the box containing the resistors. All resistors and their support structure have been replaced in March 2022. Temperature-rise of resistors during continuous pulse excitation was measured by commercial thermo camera and compared with numerical calculations. In addition, predictions about the beam induced heating of the resistors are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT032  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK062 Numerical Calibration of the Bead-Pull Setup for Beam Coupling Impedance Evaluation cavity, simulation, coupling, experiment 607
 
  • D.M.F. El Dali, E. Métral, C. Zannini
    CERN, Meyrin, Switzerland
  • G. De Michele, S. Fanella
    AVO-ADAM, Meyrin, Switzerland
 
  The bead-pull method is a commonly used electromagnetic field measurement technique exploited to tune a radiofrequency cavity to achieve design specifications. The frequency of a resonant cavity is perturbed by inserting a metallic or dielectric bead. For a given electromagnetic field, the amplitude of the perturbation depends only on the geometry of the perturbing object. Therefore, the calibration of the bead can be done in different resonant structures without loss of generality. In this paper, a method to perform an accurate calibration of the bead with electromagnetic simulations is proposed. Compared to the common practice of measuring a reference cavity, the flexibility given by the simulation method to study different bead shapes and sizes could be advantageous to optimize the measurement setup. A calibrated bead-pull setup allows to quantify the electric field and, therefore, the shunt impedance of the resonant modes of the cavity. As experimental benchmark, the beam coupling impedance measured with the calibrated bead-pull setup is compared with electromagnetic simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK062  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK015 HOM Coupler Design and Optimization for the FCC-ee W Working Point cavity, HOM, multipactoring, damping 1230
 
  • S. Udongwo, S.G. Zadeh, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • R. Calaga
    CERN, Meyrin, Switzerland
 
  Funding: Funded by CERN under ADDENDUM FCC-GOV-CC-00213 (KE4978/ ATS) to FCC-GOV-CC- 0213/2431149/KE4978 VERSION 1.0.
The Future Circular electron-positron Collider (FCC-ee) is planned to operate with beam energies from 45.6 to 182.5 GeV and beam currents from 5.4 to 1390 mA. The purpose is to study the properties of the Z-, W- and Higgs boson and the top and anti-top quarks in four operation points. The beam current of 147 mA of the W working point requires particular care to string damp HOMs. This paper proposes 2-cell 400 MHz SRF cavities with improved damping as an alternative to the baseline 4-cell cavities for this working point. The resulting impedance of the HOM-damped cavity is then calculated and compared with the impedance budget.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK015  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK040 Design of the Electron Ion Collider Electron Storage Ring SRF Cavity cavity, HOM, simulation, operation 1307
 
  • J. Guo, E. Daly, J. Henry, J. Matalevich, G.-T. Park, R.A. Rimmer, H. Wang, S. Wang
    JLab, Newport News, Virginia, USA
  • D. Holmes, K.S. Smith, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
The Electron Ion Collider (EIC) under construction at Brookhaven National Laboratory is a high luminosity collider as the next major research facility for the nuclear physics community. Among the numerous RF subsystems in the EIC, the electron storage ring (ESR) fundamental RF cavities system is one of the most challenging. This system will handle a high beam current of up to 2.5 A and replenish up to 10 MW of beam power losses from synchrotron radiation and HOM. Variable coupling is required in the cavities due to the wide range of required total RF voltage and beam current combinations. In this paper, we will present the status of the design and future plans.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK040  
About • Received ※ 16 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK048 Optimization of a 600 MHz Two-Cell Slotted Waveguide Elliptical Cavity for FCC-ee cavity, HOM, collider, GUI 1323
 
  • S. Gorgi Zadeh, O. Brunner, F. Peauger, I. Syratchev
    CERN, Meyrin, Switzerland
 
  The radio-frequency (RF) system of the future circular lepton collider (FCC-ee) must cope with different machine parameters ranging from Ampere-class operation required for the Z-peak working point to the high-gradient operation for the ttbar threshold. The Superconducting Slotted Waveguide Elliptical cavity (SWELL) concept was recently proposed as an alternative to the challenging RF baseline design of the FCC-ee. In this paper, random optimization methods are used to minimize the peak surface magnetic field and the maximum longitudinal impedance of the higher order modes (HOM) of a two-cell \unit[600]{MHz} SWELL cavity. In the next step, the waveguide slots are optimized to first have a smooth transition from the cavity to the slots to avoid large peak surface fields and second to achieve high transmission at dipole mode frequencies and low transmission at fundamental mode frequency while keeping the design compact.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK048  
About • Received ※ 23 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK064 HL-LHC Crab Cavity HOM Couplers: Challenges and Results HOM, cavity, simulation, cryomodule 1374
 
  • J.A. Mitchell, R. Calaga, E. Montesinos
    CERN, Meyrin, Switzerland
 
  To compensate for the detrimental effect of the crossing angle on luminosity production in the High Luminosity Large Hadron Collider’s (HL-LHC) interaction regions, superconducting crab cavities (vertical and horizontal) will be installed at the two interaction regions of the ATLAS and CMS experiments. Both cavity designs use multiple Higher Order Mode (HOM) couplers to reduce beam instabilities and heat loads caused by the very high proton current in the HL-LHC. The conceptual RF designs of the HOM couplers are firstly presented, evaluating HOM damping requirements, fundamental mode rejection and dynamic heat load constraints. A special focus is given to the coupler’s characteristic impedance (Z0), to improve the robustness during transport and operation. Following this, RF measurements of the HOM couplers before installation, installed on the superconducting cavities and with a circulating proton beam are detailed, analysing deviations from the simulated cases.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK064  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK065 Design of a Passive Superconducting Harmonic Cavity for HALF Storage Ring cavity, storage-ring, HOM, cryomodule 1378
 
  • Y. Wei, B. Du, G. Feng, D. Jia, J. Pang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Higher harmonic cavities, also known as Landau cavities, have been proposed to improve beam lifetime and provide Landau damping by lengthening the bunch without energy spread for stable operations of present and future low-emittance storage rings. This contribution presents design of a passive superconducting 3rd-harmonic cavity (super-3HC) for the planned Hefei Advanced Light Facility (HALF) at University of Science and Technology of China. It is designed to provide 0.43 MV at 1499.4 MHz for the nominal 2.2 GeV, 350 mA electron beam, and 1.44 MV main RF voltage in storage ring. Through optimizations it has a low R/Q < 45 Ohm, which has potential to achieve a good bunch lengthening. Higher-order-modes are strongly damped using a pair of room-temperature silicon carbide (SiC) rings to meet the requirement of beam instabilities. In addition, preliminary engineering design for the super-3HC cryomodule is also described in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK065  
About • Received ※ 03 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS028 3HC - Third Harmonic Normal Conducting Active Cavity Collaboration Between HZB, DESY and ALBA cavity, HOM, simulation, storage-ring 1471
 
  • F. Pérez, J.R. Ocampo, A. Salom, P. Solans
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • W. Anders, V. Dürr, T. Loewner, A.N. Matveenko, M. Ries, L. Shi, Y. Tamashevich, A.V. Tsakanian
    HZB, Berlin, Germany
  • M. Ebert, R. Onken
    DESY, Hamburg, Germany
  • P. Hülsmann
    GSI, Darmstadt, Germany
  • W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: Co-funded by the European Regional Development Fund (ERDF)
A collaboration agreement between the HZB, DESY and ALBA institutions was signed on 2021 in order to test the 3rd harmonic normal conducting, HOM damped, active cavity designed and prototyped by ALBA*. The test will involve low power characterization of the fundamental mode, bead pull measurements to fully determine the HOM characteristics, a full high power conditioning to validate the power capability of the cavity, and finally, the installation of the cavity in the BESSY II storage ring in order to test the cavity in real conditions with beam. In this paper the low power, bead pull and conditioning results will be presented. The cavity has been installed at BESSY II on May 2022 to be tested after the summer shutdown.
* Prototype fabrication of an active normal conducting third harmonic cavity for the ALBA Storage Ring. J.Ocampo et al. , IPAC 2022 proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS028  
About • Received ※ 06 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS033 Diamond-II Storage Ring Developments and Performance Studies lattice, injection, storage-ring, MMI 1491
 
  • I.P.S. Martin, H.C. Chao, R.T. Fielder, H. Ghasem, J. Kallestrup, T. Olsson, B. Singh, S.W. Wang
    DLS, Oxfordshire, United Kingdom
 
  The Diamond-II project includes a replacement of the existing double-bend achromat storage ring with a modified hybrid 6-bend achromat, doubling the number of straight sections and increasing the photon beam brightness by up to two orders of magnitude*. The design and performance characterisation of the new storage ring has continued to progress, including a switch to an aperture-sharing injection scheme, freezing the magnet layout, studying the impact of IDs, developing a commissioning procedure and investigating collective effects. In this paper we present an overview of these studies, including final performance estimates.
*Diamond-II Technical Design Report, Diamond Light Source Ltd.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS033  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS035 Emittance Feedback for the Diamond-II Storage Ring Using Resonant Excitation emittance, storage-ring, feedback, synchrotron 1498
 
  • S. Preston, T. Olsson, B. Singh
    DLS, Oxfordshire, United Kingdom
 
  In the Diamond Light Source storage ring, the vertical emittance is kept at 8 pm rad during operation to maintain the source brightness for the users. This is achieved by a feedback which modifies the skew quadrupole strengths, but has disadvantages such as the introduction of betatron coupling and vertical dispersion. For the proposed Diamond-II upgrade, the storage ring will have a much smaller horizontal emittance, meaning a significantly larger coupling would be required to reach the target vertical emittance, negatively affecting the off-axis injection process. To solve this problem, a feedback using the transverse multibunch feedback striplines to drive the beam at a synchrotron sideband is planned. By driving the beam resonantly in this way, the emittance can be increased without modification of the optics. This paper describes simulations of the effects of linear and non-linear optics on the excitation as well as the impact of the machine impedance for the Diamond-II storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS035  
About • Received ※ 19 May 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS040 Characterization of Higher-Order-Modes (HOM) in THOMX Storage Ring RF Cavity HOM, cavity, controls, storage-ring 1513
 
  • M. El Khaldi, J-N. Cayla, H. Monard
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • M. Diop, F. Ribeiro
    SOLEIL, Gif-sur-Yvette, France
 
  The RF system of the ThomX storage ring consists in a 500 MHz single cell copper cavity of the ELETTRA type, powered with a 50 kW CW solid state amplifier, and the associated Low-Level RF feedback and control loops. The low operating energy of 50-100 MeV makes the impedances of the cavity higher order modes (HOMs) particularly critical for the beam stability. Their parasitic effects on the beam can be cured by HOM frequency shifting techniques, based on a fine temperature tuning and a dedicated adjustable plunger. A cavity temperature stability of ± 0.1 °C within a range from 30 up to 70 °C is achieved by a precise control of its water-cooling temperature. On the other hand, the tuning of the cavity fundamental mode is achieved by changing its axial length by means of a mechanical tuner. In order to insure a fine control of the HOM frequencies, a good knowledge of their characteristics is mandatory. The main parameters of the fundamental and of the HOMs up to 2.2 GHz versus temperature have been measured at low power using a vector network analyzer (VNA).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS040  
About • Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOXGD1 Studies and Mitigation of Collective Effects in FCC-ee collider, coupling, collective-effects, synchrotron 1583
 
  • M. Migliorati, E. Carideo
    Sapienza University of Rome, Rome, Italy
  • C. Antuono, E. Carideo
    CERN, Meyrin, Switzerland
  • M. Behtouei, B. Spataro, M. Zobov
    LNF-INFN, Frascati, Italy
  • Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: The Future Circular Collider Innovation Study (FCCIS) receives funding from the European Union’s Horizon 2020 research and innovation programme under grant No 951754.
In order to achieve a high luminosity in the future electron-positron circular collider (FCC-ee), very intense multi-bunch colliding beams should have nanometer scale transverse beam sizes at the collision points. For this purpose the emittances of the colliding beams are chosen to be very small, comparable to those of the modern synchrotron light sources, while the stored beam currents should be close to the best values achieved in the last generation of particle factories. In order to preserve beam quality and to avoid collider performance degradation, a careful study of the collective effects and techniques for their mitigation is required. The current status of these studies is discussed in the paper.
 
slides icon Slides WEOXGD1 [2.898 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOXGD1  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOZSP2 Suppression of Crab Cavity Noise Induced Emittance Growth by Transverse Beam Coupling Impedance emittance, experiment, simulation, octupole 1659
 
  • N. Triantafyllou, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • F. Antoniou, H. Bartosik, P. Baudrenghien, X. Buffat, R. Calaga, Y. Papaphilippou
    CERN, Meyrin, Switzerland
  • T. Mastoridis
    CalPoly, San Luis Obispo, California, USA
 
  Crab Cavities are a key component of the High Luminosity LHC (HL-LHC) upgrade, as they aim to minimize the luminosity reduction caused by the crossing angle. Two superconducting crab cavities were installed in the Super Proton Synchrotron (SPS) at CERN in 2018 to test their operation in a proton machine for the first time. An important point to consider is the increase in transverse emittance induced by noise in the Low-Level RF (LLRF) system. During the first experimental campaign in 2018, the measured emittance growth was found to be a factor of 4 lower than predicted by the available analytical models. In this report, the effects of transverse beam impedance in the presence of CC LLRF noise on transverse emittance growth are presented and the results of the second experimental campaign, which took place in the SPS in 2021, are discussed.  
slides icon Slides WEOZSP2 [2.694 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOZSP2  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOZSP3 Measurements of Radiation Fields From a Ceramic Break simulation, radiation, injection, synchrotron 1663
 
  • Y. Shobuda, S. Hatakeyama, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Toyama
    KEK, Tokai, Ibaraki, Japan
 
  Ceramic breaks are used in synchrotrons for many purposes. For example, they are inserted between the Multi-Wire Profile Monitor (MWPM) on the injection line at the Rapid Cycling Synchrotron (RCS) in J-PARC to completely prevent the wall currents accompanying beams from affecting the MWPM. On the other hand, from the viewpoint of suppressing beam impedances and the radiation fields from the ceramic breaks, it would be preferable that the inner surface of the ceramic break is coated with Titanium Nitride (TiN), or covered over capacitors. In this report, we measure the radiation fields from the ceramic break with and without capacitors as well as the beam profile and investigate the effect of the ceramic breaks on the measurements.  
slides icon Slides WEOZSP3 [35.441 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOZSP3  
About • Received ※ 12 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT028 Design Update on the HSR Injection Kicker for the EIC kicker, injection, simulation, coupling 1904
 
  • M.P. Sangroula, C.J. Liaw, C. Liu, J. Sandberg, N. Tsoupas, B.P. Xiao
    BNL, Upton, New York, USA
  • X. Sun
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The Electron-Ion Collider (EIC), the next-generation nuclear science facility, is under the design at the Brookhaven National Laboratory. The present RHIC rings will be reconfigured as the Hadron Storage Ring (HSR) for the EIC. Design of a stripline injection kicker for the HSR for beams with the rigidity of  ∼  81   T-m poses some technical challenges due to the expected shorter bunch spacing, heating due to higher peak current and the larger number of bunches, and the required higher pulsed voltage. Recently, we updated its mechanical design to optimize the characteristic and beam coupling impedances. In addition, we incorporated the impedance tuning capability by introducing the kicker aperture adjustment mechanism. Finally, we incorporated high voltage FID feedthroughs (FC26) to this kicker. This paper reports the design and optimization updates of the HSR injection kicker including the impedance tuning capability, optimization of both the characteristic and the beam coupling impedances, and finally the incorporation of a high voltage feedthrough design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT028  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT064 Simulations and Measurements of Luminosity at SuperKEKB simulation, luminosity, resonance, experiment 2011
 
  • D. Zhou, Y. Funakoshi, K. Ohmi, Y. Ohnishi
    KEK, Ibaraki, Japan
  • Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The interplay of beam-beam interaction, machine imperfections, and beam coupling impedance makes it difficult to predict the luminosity performance of SuperKEKB. Since 2020, the crab waist scheme was introduced to SuperKEKB to suppress beam-beam resonances. The coherent beam-beam head-tail instability and beam-beam driven synchro-betatron resonances due to large crossing angle can drive horizontal blowup, which cannot be suppressed by crab waist. The longitudinal impedance modulates the synchrotron motion and therefore affects beam-beam instability. In this paper, we compare simulations and measurements of luminosity and discuss the challenges and direction toward developing a predictable luminosity simulation model for SuperKEKB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT064  
About • Received ※ 13 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK013 Direct Impedance Measurement of the CERN PS Booster Finemet Cavities cavity, booster, simulation, proton 2064
 
  • S.C.P. Albright, M.E. Angoletta, D. Barrientos, A. Findlay, M. Jaussi, J.C. Molendijk
    CERN, Meyrin, Switzerland
 
  Over CERN’s Long Shutdown 2, the conventional ferrite-loaded cavities of the PS Booster were replaced with wide-band Finemet-loaded cavities. The Finemet cavities bring many operational advantages, but also represent a significant broadband impedance source. The impedance is mitigated by servo loops, which suppress the induced voltage, reducing the impedance as seen by the beam. Accurately including the impedance of the cavity and the effect of the servoloops in longitudinal tracking simulations is essential to predict the performance with beam. This paper discusses the results of a measurement campaign, which is intended to give a direct measurement of the cavity impedance. Using the detected voltage and the measured beam profile, the cavity impedance can be inferred and used to improve beam dynamics modelling.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK013  
About • Received ※ 26 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK051 Beam Induced Power Loss Estimation of a Movable Synchrotron Light Extraction Mirror for the LHC extraction, synchrotron, resonance, coupling 2173
 
  • M. Wendt, W. Andreazza, E. Bravin, F. Guillot-Vignot
    CERN, Meyrin, Switzerland
 
  Beam instruments based on synchrotron light are an important part of the beam monitoring diagnostics suite in the Large Hadron Collider (LHC) at CERN. In frame of the high luminosity upgrade (HL-LHC) additional synchrotron light diagnostics are demanded, too many to be covered by the present Beam Synchrotron-light Radiation Telescope (BSRT), which utilizes a fixed light extraction mirror. Therefore, an additional synchrotron light diagnostics setup is under development, now with a movable mirror to extract the synchrotron light emitted solely by a superconducting LHC dipole magnet. With higher bunch intensities anticipated in the HL-LHC, the beam induced power losses, and therefore local heat dissipation, play a critical role in the design of the extraction mirror. This paper summarizes the estimation of the bunched-beam induced power losses based on numerical simulations and RF measurements on a prototype light extraction mirror.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK051  
About • Received ※ 06 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK052 Beam Coupling Impedance Study and Its Database of Siam Photon Source Storage Ring storage-ring, vacuum, wakefield, simulation 2177
 
  • N. Juntong, T. Chanwattana, S. Jummunt, K. Kittimanapun, T. Phimsen, W. Promdee, T. Pulampong
    SLRI, Nakhon Ratchasima, Thailand
 
  Since the Siam Photon Source (SPS) had an electron beam energy upgraded from 1.0 GeV to 1.2 GeV in 2005, the storage ring impedance measurements were done once in 2007. Two insertion magnet devices have been installed in the SPS storage ring during June to August 2013. There are several vacuum components added to the storage ring; these affect the ring impedance. Quantitative understanding of instabilities requires detailed knowledge of the impedance of the ring. For this purpose, the development of an impedance database is a necessity, where the wake potentials of each vacuum component are kept and maintained in a standard format. The self-describing data sets (SDDS) file format will be utilized to record components wake potentials. The wake potentials of each vacuum component can be obtained from a particle tracking simulation; a CST particle studio program will be used in the simulation process. The wake potentials can also be included in a beam dynamic tracking program such as ELEGANT to observe beam behaviors with these instabilities and find a curing means. The study results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK052  
About • Received ※ 19 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK053 Simulation of Bunch Formation for the Mu2e Experiment proton, simulation, experiment, dipole 2180
 
  • K.P. Harrig, E. Prebys
    UCD, Davis, California, USA
  • V.P. Nagaslaev, S.J. Werkema
    Fermilab, Batavia, Illinois, USA
 
  Funding: Grant DE-SC0019254, The U.S. Department of Energy, Office of Science and Fermi Research Alliance, LLC Contract No. DE-AC02-07CH11359
The Fermilab Recycler is an 8 GeV storage ring composed of permanent magnets that was crucial to the success of the Fermilab Tevatron Collider program. It is currently being used to slip-stack protons for the high energy neutrino program and to re-bunch protons for use in the Muon g-2 and Mu2e experiments. For the latter applications, the Recycler re-bunches each 1.6 µs "batch" from the Fermilab Booster into four 2.5 MHz bunches. For the Mu2e experiment, it is crucial that beam more than 125 ns from the nominal bunch center be suppressed by at least a factor of 1E-5. While bunch formation is currently in operation for the g-2 experiment, this out of time requirement has not been met, and the reason is not understood. This work presents a simulation of bunch formation in the Recycler, in an effort to understand the reason for this excessive out of time beam and to search for a way to reduce it.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK053  
About • Received ※ 30 May 2022 — Revised ※ 16 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK059 Suppression of Emittance Growth by a Collective Force: Van Kampen Approach emittance, damping, feedback, cavity 2197
 
  • X. Buffat
    CERN, Meyrin, Switzerland
 
  In hadron synchrotrons, external sources of noise affecting the beam induce emittance growth through the mechanism of decoherence. Active feedbacks are often used to suppress this emittance growth. In the presence of beam-beam interactions, it was shown that coherent modes of oscillations with frequencies shifted outside of the incoherent spectrum significantly enhances the efficiency of the emittance growth suppression by active feedbacks. We show that the same enhancement of the emittance growth suppression may be driven by a beam coupling impedance generating a real tune shift larger than the detuning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK059  
About • Received ※ 03 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK062 Intrabunch Motion with Both Impedance and Beam-Beam Using the Circulant Matrix Approach coupling, proton, emittance, collider 2209
 
  • E. Métral, X. Buffat
    CERN, Meyrin, Switzerland
 
  In high-intensity high-brightness circular colliders such as the CERN LHC, coherent beam-beam effects and impedance cannot be treated independently. Coherent beam-beam dipole modes can couple with higher order head-tail modes and lead to the transverse mode coupling instability of colliding beams. This mechanism has been analysed in detail in the past through the eigenvalues, which describe the evolution of the beam oscillation mode-frequency shifts. In this contribution, the transverse mode coupling instability of colliding beams is studied using the eigenvectors, which describe the evolution of the intrabunch motion. As this instability exhibits several mode couplings and mode decouplings, the evolution of the intrabunch motion reveals quite some interesting features (such as a propagation of the traveling-wave not only from the head to the tail but also from the tail to the head and similar intrabunch signals for some mode coupling and mode decoupling), which are compared to past predictions in the presence of impedance only.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK062  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 03 July 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK063 A Wireless Method to Obtain the Impedance From Scattering Parameters coupling, simulation, scattering, GUI 2213
 
  • C. Antuono, M. Migliorati, E. Métral, C. Zannini
    CERN, Meyrin, Switzerland
  • M. Migliorati, A. Mostacci
    LNF-INFN, Frascati, Italy
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
 
  The coaxial wire method is a common and appreciated choice to assess the beam coupling impedance of an accelerator element from scattering parameters. Nevertheless, the results obtained from wire measurements could be inaccurate due to the presence of the stretched conductive wire that artificially creates the conditions for the propagation of a Transverse ElectroMagnetic (TEM) mode. The aim of this work is to establish a solid technique to obtain the beam coupling impedance from electromagnetic simulations, without modifications of the device under test. In this framework, we identified a new relation to get the resistive wall beam coupling impedance of a circular chamber directly from the scattering parameters and demonstrated that it reduces to the exact theoretical expression. Furthermore, a possible generalization of the method to arbitrary cross section geometries has been studied and validated with numerical simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK063  
About • Received ※ 07 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS001 Effect of Betatron Coupling on Transverse Mode-Coupling and Head-Tail Instabilities coupling, damping, synchrotron, betatron 2225
 
  • W. Foosang, A. Gamelin, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  In the context of SOLEIL Upgrade, the 4th generation storage ring project of SOLEIL, several methods are pursued to extend the beam lifetime and limit the emittance growth by reducing the Touschek effect and intra-beam scattering. Betatron coupling is one of the potential techniques to achieve this objective as it can increase the beam volume by transforming a flat beam into a round beam. However, the effect of the coupling on the collective effects is not fully comprehended, but some studies have shown an improvement in transverse instability thresholds. It was, therefore, crucial to investigate the impact of coupling on beam instability for SOLEIL Upgrade. This work presents numerical studies on the impact of coupling on the transverse mode-coupling and the head-tail instabilities. The results showed that coupling could be not only beneficial, but also detrimental.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS001  
About • Received ※ 08 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 04 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS004 Investigation of RF Heating for the Multipole Injection Kicker Installed at SOLEIL injection, kicker, simulation, operation 2233
 
  • A. Gamelin, P. Alexandre, R. Ben El Fekih, J. Da Silva Castro, M. El Ajjouri, A. Letresor, L.S. Nadolski, R. Ollier, T.S. Thoraud
    SOLEIL, Gif-sur-Yvette, France
  • M. Sacko, S. Taurines
    Avantis Concept, SAINT-CERE, France
 
  During the commissioning of the new Multipole Injection Kicker (MIK) pulsed magnet at SOLEIL synchrotron, an anomalously high heating of the MIK chamber and flanges was found. To better manage the heat load, fans directed toward the MIK were added to improve the air-cooling flow. This allowed the nominal current to be reached in all operation modes while keeping reasonable temperatures on the MIK. Post-installation investigations subsequently showed that the initial estimate of the maximal heat load was in agreement with the measured temperature in several operation modes both with and without the additional fans. In this article, we present the complete study, starting from the impedance calculation to thermal simulations, and comparison with the measured data with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS004  
About • Received ※ 18 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 24 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS006 Simulation of the Effect of Corrugated Structures on the Longitudinal Beam Dynamics at KARA resonance, bunching, radiation, simulation 2241
 
  • S. Maier, M. Brosi, A. Mochihashi, A.-S. Müller, M.J. Nasse, P. Schreiber, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the DFG project 431704792 in the ANR-DFG collaboration project ULTRASYNC. S. M. acknowledge the support by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" (KSETA).
Two parallel corrugated plates will be installed at the KIT storage ring KARA (KArlsruhe Research Accelerator). This impedance manipulation structure will be used to study and eventually control the beam dynamics and the emitted coherent synchrotron radiation (CSR). In this contribution, we present the results obtained with the Vlasov-Fokker-Planck solver Inovesa showing the impedance impact of different corrugated structures on the bunch and its emitted CSR power.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS006  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS008 Impact of Broadband Impedance on Longitudinal Coupled-Bunch Instability Threshold HOM, synchrotron, cavity, damping 2245
 
  • I. Karpov, E.N. Shaposhnikova
    CERN, Meyrin, Switzerland
 
  Coupled-bunch instabilities (CBI) and the loss of Landau damping (LLD) in the longitudinal plane can affect the performance of high-current synchrotrons. The former is driven by the narrowband impedance of resonant structures, while the latter is mainly determined by the broadband impedance of the entire accelerator and is a single-bunch effect. Therefore, the CBI and LLD thresholds are usually evaluated separately in order to define the corresponding critical impedance budget for given beam parameters. In this paper, we show that the CBI threshold in the presence of broadband impedance can be significantly lower than the one defined by only the narrowband impedance, especially if the LLD threshold is below the CBI threshold. In some cases, the beam becomes unstable even below the LLD threshold. This explains the low CBI threshold observed for the LHC-type beams in the CERN SPS. For HL-LHC, the broadband impedance may also significantly reduce the CBI threshold driven by higher-order modes of the crab cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS008  
About • Received ※ 08 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS009 Simulation Studies of Longitudinal Stability for High-Intensity LHC-Type Beams in the CERN SPS simulation, emittance, controls, injection 2249
 
  • D. Quartullo, L. Intelisano, I. Karpov, G. Papotti
    CERN, Meyrin, Switzerland
 
  Beams in the SPS for the High Luminosity LHC (HL-LHC) must be stabilized in the longitudinal plane up to an intensity of 2.4·1011 protons per bunch. The fourth harmonic RF system increases Landau damping, and controlled longitudinal emittance blow-up is applied to cope with coupled-bunch instabilities along the ramp and at flat-top. Longitudinal multi-bunch beam dynamics simulations of the SPS cycle were performed starting from realistic bunch distributions, as injected from the PS. The full SPS impedance model was included, as well as the effect of low-level RF (LLRF) feedback for beam-loading compensation. A realistic model of the beam-based LLRF loops was used for the particle tracking studies. Controlled longitudinal emittance blow-up was included by generating bandwidth-limited RF phase noise and by injecting it into the beam phase-loop input, exactly as in hardware. Due to the stringent constraints on particle losses and extracted bunch lengths, particular attention was paid to monitoring these parameters in the simulations, and to determining the best configuration for a stable acceleration of the beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS009  
About • Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS010 Studies of Transverse Coupled-Bunch Instabilities from Resistive-Wall and Cavity Higher Order Modes for Diamond-II cavity, simulation, HOM, storage-ring 2253
 
  • S.W. Wang, H.C. Chao, R.T. Fielder, I.P.S. Martin, T. Olsson
    DLS, Oxfordshire, United Kingdom
 
  The transverse coupled-bunch instabilities from resistive-wall impedance and main cavity higher order modes (HOMs) are studied for the Diamond-II storage ring. The growth rates of all the coupled-bunch modes are calculated using both the results from tracking simulations and analytic formula, which show a good consistency. The instability threshold from the resistive-wall impedance is estimated and verified by simulation. The impact of the main cavity HOMs is studied in a similar way, and the results show instabilities from HOMs are much smaller than that from resistive-wall impedance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS010  
About • Received ※ 06 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 05 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS011 Single Bunch Instability Studies with a New Impedance Database for Diamond-II cavity, database, lattice, synchrotron 2257
 
  • R.T. Fielder, H.C. Chao, S.W. Wang
    DLS, Oxfordshire, United Kingdom
 
  We present an updated impedance database for the Diamond-II storage ring, along with an analysis of single bunch instabilities and thresholds based on particle tracking simulations using Elegant. Various cases with different chromaticity, insertion device parameters and harmonic cavity settings are studied, and the effects on the microwave instability, bunch lengthening and phase shifts are simulated and compared with analytic formulae. Preliminary results show that the single-bunch instability thresholds are above requirements for a uniform fill, and with inclusion of a harmonic cavity the longitudinal and transverse instability thresholds can also satisfy requirements for a hybrid fill.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS011  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS033 CETA-A Code Package Being Developed for Collective Effect Analysis and Simulation in Electron Storage Rings simulation, cavity, storage-ring, collective-effects 2323
 
  • C. Li, Y.-C. Chae
    DESY, Hamburg, Germany
 
  The code Collective Effect Tool Analysis (CETA) is under development to study the collective effects in the electron storage ring. With the impedance either generated by itself or imported from an external file, CETA can calculate the loss and kick factors, the longitudinal equilibrium bunch length from a Haissinski solver, and the head-tail mode frequency shift from a Vlasov solver. Meanwhile, the code CETASim, which can track particles to study coupled-bunch instabilities caused by long-range wakefield, ion effects, transient beam loading effect, bunch-by-bunch feedback, etc., is also under development. In this paper, we describe the code status and give several simulation results from CETA and CETASim to show how these codes work.
This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 871072
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS033  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST003 Collective Effects Estimates for the Damping Ring Design of the FCC-ee electron, emittance, damping, positron 2435
 
  • O. Etisken
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • F. Antoniou, F. Zimmermann
    CERN, Meyrin, Switzerland
  • A. De Santis
    INFN/LNF, Frascati, Italy
  • C. Milardi
    LNF-INFN, Frascati, Italy
 
  The current injector complex design of the FCC-e+e project consists of e+/e linacs, which accelerate the beams up to 6 GeV, a damping ring at 1.54 GeV, a pre-booster ring, accelerating the beam up to 16 GeV and a booster synchrotron ring integrated in the collider tunnel accelerating the beams up to the collision energies. The purpose of the damping ring is to accept the 1.54 GeV beam coming from the linac-1, damp the positron/electron beams and provide the required beam characteristics for the injection into the linac-2. In this presentation the current damping ring design is introduced and analytical calculations on various collective effect such as space charge, intra-beam scattering, longitudinal micro-wave instability, transverse mode coupling instability, ion effects, electron cloud and coherent synchrotron radiation, are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST003  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST020 Visualisation of Pareto Optimal Spaces and Optimisation Solution Selection Using Parallel Coordinate Plots cavity, GUI, ECR, RF-structure 2487
 
  • S.J. Smith, R. Apsimon, G. Burt, M.J.W. Southerby
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S. Setiniyaz
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Setiniyaz
    Lancaster University, Lancaster, United Kingdom
 
  In this paper, we build on previous work where multi-objective genetic algorithms were used to optimise RF cavities using non-uniform rational basis splines (NURBS) to improve the cavity geometries and reduce peak fields. These optimisations can produce thousands of Pareto optimal solutions, from which a final cavity solution must be selected based on design criteria, such as accelerating gradient and power requirements. As all points are considered equally optimal, this can prove difficult without further analysis. Here we focus on the visualisation of the Pareto optimal points and the final solution selection process. We have found that the use of clustering algorithms and parallel coordinate plots (PCPs) provide the best way to represent the data and perform the necessary trade-offs between the peak fields and shunt impedance required to pick a final design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST020  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT002 Beam Power Deposition on the Cryogenic Permanent Magnet Undulator simulation, SRF, cryogenics, undulator 2556
 
  • L.R. Carver, C. Benabderrahmane, P. Brumund, N. Carmignani, J. Chavanne, G. Le Bec, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  X-rays with high brilliance and low phase errors are generated in the Cryogenic Permanent Magnet Undulator (CPMU) currently in use at the ESRF. In the event of a failure of the cryogenic cooling the beam will continue to deposit power into the module, even when the undulator jaws are fully opened. This could lead to unacceptably high heating of the magnet blocks which could cause their demagnetisation. Impedance simulations were performed using IW2D and CST to compute the power deposited by the beam in both the closed and open jaw settings. This was followed by thermal simulations to compute the expected temperature rise. These results will help advise the operational procedure in the event of a cooling failure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT002  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT030 Design Study of 30 MeV Linac for a Compact THz Radiation Source linac, electron, radiation, ion-source 2643
 
  • S. Jummunt, S. Chunjarean, N. Juntong, S. Klinkhieo
    SLRI, Nakhon Ratchasima, Thailand
  • K. Manasatitpong
    Synchrotron Light Research Institute (SLRI), Muang District, Thailand
 
  Funding: This work is supported by Science, Research, and Innovation Fund (SRI Fund)
A compact THz radiation source plays a possibility to achieve intense THz radiation at tunable frequencies between 0.5 and 5.0 THz, with a peak power of several MW and narrow-bandwidth. This source requires essentially the reliable high gradient s-band linear accelerator (linac) to provide an electron beam energy up to 30 MeV with high bunch charge. In order to obtain a high gradient linac mentioned, the cavity structure has been optimized and performed using the software CST. The preliminary design of linac and beam dynamics study are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT030  
About • Received ※ 14 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT053 Goubau-Line Set Up for Bench Testing Impedance of IVU32 Components simulation, undulator, cavity, vacuum 2719
 
  • P.I. Volz, A. Meseck
    HZB, Berlin, Germany
  • A. Meseck
    KPH, Mainz, Germany
 
  The worldwide first in-vacuum elliptical undulator, IVUE32, is being developed at Helmholtz-Zentrum Berlin. The 2.5 m long device with a period length of 3.2 cm and a minimum gap of about 7 mm is to be installed in the BESSY II storage ring. It will deliver radiation in the soft X-ray range to several beamlines. The proximity of the undulator structure to the electron beam makes the device susceptible to wakefield effects which can influence beam stability. A complete understanding of its impedance characteristics is required prior to installation and operation, as unforeseen heating of components could have catastrophic consequences. To understand and measure the IVU’s impedance characteristics a Goubau-Line test stand is being designed. A Goubau-line is a single wire transmission line for high frequency surface waves with a transverse electric field resembling that of a charged particle beam out to a certain radial distance. A concept optimized for bench testing IVUE32-components will be discussed, microwave simulations will be presented together with first measurements from a test stand prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT053  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK043 Mitigation of High Voltage Breakdown of the Beam Screen of a CERN SPS Injection Kicker Magnet injection, simulation, kicker, coupling 2868
 
  • M.J. Barnes, W. Bartmann, M. Díaz Zumel, L. Ducimetière, L.M.C. Feliciano, T. Kramer, V. Namora, T. Stadlbauer, D. Standen, P. Trubacova, F.M. Velotti, C. Zannini
    CERN, Meyrin, Switzerland
 
  The SPS injection kicker magnets (MKP) were developed in the 1970’s, before beam induced power deposition was considered an issue. These magnets are very lossy from a beam impedance perspective: this is expected to be an issue during SPS operation with the higher intensity beams needed for HL-LHC. A design, with serigraphy applied to an alumina carrier, has been developed to significantly reduce the broadband beam coupling impedance and hence mitigate the heating issues. During high voltage pulse testing there were electrical discharges associated with the serigraphy. Detailed mathematical models have been developed to aid in understanding the transiently induced voltages and to reduce the magnitude and duration of electric field. In this paper, we discuss the solutions implemented to mitigate the electrical discharges while maintaining an adequately low beam-coupling impedance. In addition, the results of high voltage tests are reported. The alumina substrate has a high secondary electron yield and thus electron-cloud could be an issue, with SPS beam, if mitigating measures were not taken: this paper also discusses the measures implemented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK043  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK045 Branch Module for an Inductive Voltage Adder for Driving Kicker Magnets with a Short Circuit Termination kicker, operation, injection, controls 2875
 
  • J. Ruf, M.J. Barnes, Y. Dutheil, T. Kramer
    CERN, Meyrin, Switzerland
  • M. Sack
    KIT, Karlsruhe, Germany
 
  For driving kicker magnets terminated in a short circuit, a branch module for an inductive voltage adder has been designed and assembled. The module has been designed for a maximum charging voltage of 1.2 kV and an output current of 200 A considering the current doubling due to the short circuit termination. It features three consecutive modes of operation: energy injection, freewheeling, and energy extraction. Therefore, the topology of the branch module consists of two independently controlled SiC MOSFET switches and one diode switch. In order not to extend the field rise time of the kicker magnet significantly beyond the magnet fill time, the pulse must have a fast rise time. Hence, the switch for energy injection is driven by a gate boosting driver featuring a half bridge of GaN HEMTs and a driving voltage of 80 V. Measurements of the drain source voltage of this switch showed a fall time of 2.7 ns at a voltage of 600 V resulting in a voltage rise time of 5.4 ns at the output terminated with a resistive load. To meet both the rise time and current requirements, a parallel configuration of four SiC MOSFETs was implemented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK045  
About • Received ※ 16 May 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)