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Abstract

In hadron synchrotrons, external sources of noise affecting

the beam results in emittance growth through the mechanism

of decoherence. Active feedbacks are often used to suppress

this emittance growth. In the presence of beam-beam inter-

actions, it was shown that coherent modes of oscillations

with frequencies shifted outside of the incoherent spectrum

significantly enhances the efficiency of the emittance growth

suppression by active feedbacks. We show that the same

enhancement of the emittance growth suppression may be

driven by a beam coupling impedance generating a real tune

shift larger than the detuning.

INTRODUCTION

We aim at quantifying the emittance growth due to an ex-

ternal source of noise in the presence of a frequency spread

and a collective force. In the next section we describe the

mathematical model based on a perturbation of the linearised

Vlasov equation and obtain a basis of functions representing

the modes of oscillation of the beam. In the third section the

problem is reduced to an initial condition problem by assum-

ing that the noise can be represented by a superposition of

individual kicks without interference. Thus, an initial condi-

tion corresponding to an offset beam is expressed in terms

of modes of oscillation, such that the time evolution of the

perturbation can be written explicitly. In the fourth section,

an expression for the final emittance after decoherence is

obtained by considering the limit of long time scale.

MODEL

In the following we use the action-angle variables J and

θ relating to the transverse position x and momentum px :

x =

√
2J cos(θ) (1)

px =

√
2J sin(θ). (2)

The unperturbed distribution can then be written as

Ψ0(J, θ) =
1

2π
f0(J). (3)

The effective Hamiltonian of the lattice H0 is the one of an

oscillator featuring amplitude detuning as

ω(J) ≡ ∂H0

∂J
. (4)

We add a collective force proportional to the average position

of the bunch

Fc = −2∆Ωext ⟨x⟩, (5)
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with ∆Ωext the corresponding complex frequency shift.

Thus we can write the Vlasov equation as:

∂Ψ1

∂t
+

∂Ψ1

∂θ
ω(J) − ∂Ψ0

∂J

√
2J sin(θ)Fc = 0. (6)

We will be looking for harmonic solutions with the form

Ψ1(J, θ, t) =
1

2π
g(J)ei(θ−Ωt). (7)

The Vlasov equation becomes:

(Ω − ω)g = −1

2
∆Ωext

df0

dJ

√
2J

∫
dJ

√
2Jg. (8)

VAN KAMPEN MODES

Coherent Mode

A solution of Eq. (8), corresponding to a coherent mode 
of oscillation, can be expressed as:

gc =
−1

2
∆Ωext

√
2J

d f0
dJ

Ωc − ω
, (9)

choosing the mode frequency Ωc such that:∫
dJ

√
2Jgc = 1. (10)

This condition translates into the well known dispersion

relation [1]: ∫
dJ

J
d f0
dJ

Ωc − ω
=

−1

∆Ωext

(11)

Incoherent Spectrum

Following Van Kampen [2], we find another set of solu-

tions in the realm of distribution functions:

gk =
−1

2
∆Ωext

(√
2J

d f0
dJ

Ωk − ω

)
p.v.

+ λkδ(J − k), (12)

with k ∈ [0,∞[. The notation (·)p.v. indicates that the inte-

gration of the distribution function should be performed as

a Cauchy principal value. As for the coherent mode, λk is

chosen such that ∫
dJ

√
2Jgk = 1. (13)

This condition yields:

λk =
1

√
2k

(
1 + ∆Ωextp.v.

∫
dJ

J
d f0
dJ

Ωk − ω

)
. (14)
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By introducing this expression into the Vlasov equation,

we determine the oscillation frequencies of the incoherent

modes Ωk = ω(k). Once the coefficients ac and ak are

determined based on the initial condition, the time evolution

of the perturbation is given by:

Ψ1(J, θ, t) =
ac

2π
gc(J)ei(θ−Ωc )t

+

∫
dk

ak

2π
gk(J)ei(θ−Ωk )t . (15)

DECOMPOSITION OF THE INITIAL

KICK

In order to estimate the emittance growth generated by

a kick to the beam, we want to express an initial condition

with a beam offset by δext in terms of Van Kampen modes:

Ψ1(J, θ, 0) = δext
√

2J
dΨ0

dJ
eiθ (16)

⟨gn, gm⟩ ≡
∫

dJ
gng

∗
m

df0
dJ

. (17)

It can be shown that the Van Kampen modes are orthogonal,

thus we can write:

ac =
δext

|⟨gc, gc⟩|
, ak =

δext

|⟨gk, gk⟩|
, (18)

with

⟨gc, gc⟩ =
1

2
|∆Ωext |2

∫
dJ

J
d f0
dJ

|Ωc − ω|2
(19)

for the coherent mode and

⟨gk, gk⟩ =

1

2k
d f0
dk

©«
π2

�����∆Ωext

∂ω

∂J

�����
2

k2

(
df0

dk

)2

+ 2πk
df0

dk

Im∆Ωext�� ∂ω
∂k

��
+

�����1 + ∆Ωextp.v.

∫
dJ

J
d f0
dJ

Ωk − ω

�����
2ª®¬

(20)

for the incoherent spectrum. A key step in the derivation of

this expression is the usage of the Poincaré-Bertrand formula

to modify the order of integration, as in [3]. This leads to the

first term in π2 inside the parenthesis. We note also that a

single pole was assumed, imposing that ω(J) is monotonic,

but not necessarily linear at this point.

EMITTANCE GROWTH

Computing the time evolution of the emittance by aver-

aging Eq. (15), we find that it is constant, indicating that

the emittance growth due to a kick is a second order effect.

Following [4], we obtain the second order term using Hamil-

ton’s equation for the action J and insert it into the Vlasov

equation:

dJ

dt
=

1
∂Ψ0

∂J

(
∂Ψ1

∂t
+

∂Ψ1

∂θ
ω(J)

)
. (21)

Averaging over J and realising that, up to second order, the

partial derivatives can be expressed as a total time derivative

we obtain

d

dt
⟨J⟩Ψ1(t) =

1

2

d

dt

∫
dJdθ

1
∂Ψ0

∂J

Ψ
2
1 . (22)

Using the expression of the time evolution of the distribution

in terms of Van Kampen modes (Eq. (15)), we get

⟨J⟩Ψ1(t) =
δ2ext

8π2

∫
dJdθ

1
∂Ψ0

∂J(
1

|⟨gc, gc⟩|
gc(J)ei(θ−Ωc t)

+

∫
dk

1

|⟨gk, gk⟩|
gk(J)ei(θ−Ωk t)

)2

. (23)

As we are interested in the total emittance growth due to a

single kick, we thus compute the limit of the average emit-

tance towards infinite time. The limit exists if we assume

that there exists a damping force, i.e. Im(Ωc) < 0.0:

∆ϵ ≡ lim
t→∞

⟨J⟩Ψ1(t) − ϵ0

=

1

2
δ2ext

∫
dk

|⟨gk, gk⟩|
, (24)

where we have introduced the unperturbed r.m.s. emittance

⟨J⟩Ψ0
≡ ϵ0. The contribution of the coherent mode ac van-

ishes when considering the limit, showing that all the energy

imparted to the collective motion is removed by the damping

force and thus does not contribute to the emittance growth.

Only the incoherent spectrum contributes to the emittance

growth. This result is consistent with the ones obtained in

the frame of coherent beam-beam interactions [4]. In ab-

sence of collective force, the emittance growth due to a kick

is given by 1
2
δ2ext [5], thus it is convenient to define η, the

emittance growth factor due to the collective force:

η ≡
∫

dk

|⟨gk, gk⟩|
(25)

which can be solved numerically using Eq. (20).

Gaussian Distribution and Linear Detuning

We apply the results above to a practical configuration 
featuring linear detuning and a Gaussian distribution of the 
particles. The lattice Hamiltonian and corresponding oscil-

lation frequencies are

H0 = ω0

(
Q0J +

a

2
J2

)
and ω(J) = ω0(Q0 + aJ), (26)

with ω0 being the revolution frequency, Q0 the unperturbed

tune and a the linear detuning coefficient. The unperturbed

particle distribution is

f0 =
1

ϵ0
e−J/ϵ0 . (27)
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Figure 1: Emittance growth factor with a positive detun-

ing coefficient for different real and imaginary part of the

external frequency shift.

We have

η =

∫
dI

Ie−I

G(I) (28)

with

G(I) =
�����
����1 + ∆Ωext

aω0ϵ0

(
1 + Ie−IE1(−I)

)����
2

(29)

− 2πIe−I
Im∆Ωext

|aω0ϵ0 |
(30)

+ π2

����∆Ωext

aω0ϵ0

����
2

I2e−2I

����� . (31)

E1 is the exponential integral. We find that the emittance

growth factor is entirely determined by the external com-

plex frequency shift scaled by the r.m.s. frequency spread
∆Ωext

ω0aϵ0
. This dependence is shown in Fig. 1. The presence

of a damping component reduces the emittance growth in

all configurations. This behaviour corresponds to the ex-

pectation for a resistive feedback. In addition we observe

that a real frequency shift, e.g. by introducing a reactive

component to the feedback system, can significantly reduce

the emittance growth if the real frequency shift is signifi-

cantly larger than the frequency spread. There is a strong

asymmetry between negative and positive real frequency

shifts. In this example the detuning coefficient a is positive,

such that a negative coherent frequency shift is favourable to

suppress the emittance growth. This can be understood with

Fig. 2. The incoherent spectrum is mostly excited for pos-

itive real external frequency shifts, i.e. external frequency

shifts matching the oscillation frequencies of individual par-

ticles. In this regime, Eq. (11) does not admit any solution

for Ωc , implying that the coherent mode does not exist, only

incoherent ones. Since only the energy imparted to the in-

coherent modes leads to emittance growth, it explains why

the emittance growth suppression is least effective in this

regime. For larger real external frequency shifts with either

sign, the coherent mode dominates the dynamics and thus

Figure 2: Spectrum of oscillation resulting from a kick for

different external frequency shifts Re∆Qext (top plot). The

imaginary part is kept constant at 2 · 10−4 and the detuning

aϵ0 is 10−3. The incoherent contribution is shown with a

colour scale, whereas the coherent mode is represented by

a red line, the corresponding coefficient is shown on the

bottom plot.

the emittance growth is effectively suppressed.

CONCLUSION

Using the Van Kampen mode approach, it is shown that a

collective force can significantly reduce the emittance growth

due to an external source of noise. A damping force is needed

to obtain a suppression of the emittance growth, yet a real

frequency shift may enhance this suppression, mostly in

configurations where the real frequency shift is larger than

the frequency spread, leading to the emergence of a coherent

mode.

This behaviour is analogous to the one obtained in the frame

of beam-beam interactions [4], namely the existence of a

coherent mode outside of the incoherent spectrum leads

to an effective suppression of the emittance growth. This

work shows that the presence of beam-beam coherent modes

is not necessary to achieve the suppression, but it can be

achieved for example with an active feedback featuring both

a resistive and a reactive component. It may also occur due to

a complex frequency shift driven by the machine impedance,

as shown in simulations in [6, 7].
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