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Abstract
In this paper, we build on previous work where multi-

objective genetic algorithms were used to optimise rf cavi-
ties using non-uniform rational basis splines (NURBS) to
improve the cavity geometries and reduce peak fields. [1]
These optimisations can produce thousands of Pareto opti-
mal solutions, from which a final cavity solution must be
selected based on design criteria, such as accelerating gra-
dient and power requirements. As all points are considered
equally optimal, this can prove difficult without further analy-
sis. Here we focus on the visualisation of the Pareto optimal
points and the final solution selection process. We have
found that the use of clustering algorithms and parallel coor-
dinate plots (PCP’s) provide the best way to represent the
data and perform the necessary trade-offs between the peak
fields and shunt impedance required to pick a final design.

INTRODUCTION
Multi-objective optimisation (MO) methods are employed

when an optimisation must be performed that involves two
or more conflicting objectives that must be optimized si-
multaneously, which is often the case in rf cavity design.
Mathematically these types of problems can be summarized
as follows:

min/max 𝑓𝑚 (𝑥), 𝑚 = 1, 2, ...𝑀, (1)
subject to: 𝑔 𝑗 (𝑥) ≥ 0, 𝑗 = 1, 2, ...𝐽, (2)
𝑥𝑖𝑙𝑏 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑢𝑏, 𝑖 = 1, 2, ..., 𝑛 (3)

Where 𝑓𝑚 are the objectives, 𝑔 𝑗 are the constraints and
𝑥𝑖𝑙𝑏/𝑖𝑢𝑏 are the bounds on the input parameters. As an exam-
ple for cavity design, these may be the peak fields, a required
operating frequency, and limits on some of the cavity dimen-
sions, respectively. A single, unique, optimal solution to
these MO problems does not exist, and instead a set is found
that defines the trade-off between all the objectives. For com-
plex optimisations with many inputs and objectives, these
sets can contain thousands of solutions that are all consid-
ered equally optimal by the algorithm. These points can
also have objective values that are very similar to each other,
either because the algorithm has converged to a near con-
tinuous set, or in the case of rf design, due to numerical
inaccuracies caused by meshing. This presents a difficulty
to the designer who must then select a ’best’ solution from
this set to use for a final design based on some criteria. This
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paper explores methods that can be applied to these large
sets in order to aid in the final solution selection process.

SINGLE CELL OPTIMISATION RESULTS
An optimisation was previously performed for a generic

X-band (12 GHz), 𝛽 = 1, 2𝜋/3 travelling wave cavity and
the reader is referred to [1] for details. This optimisation
produced a large Pareto optimal set of 5000 points which
are shown in Fig. 1, with 2 objectives on the axis; shunt
impedance per unit length (Z), and the peak electric field
(𝐸𝑝𝑘/𝐸𝑎𝑐𝑐). The points are also colour coded with a third
objective, the modified Poynting vector (

√
𝑆𝑐/𝐸𝑎𝑐𝑐) [2].

Figure 1: 2D scatter plot showing Pareto optimal set in the
Z vs. 𝐸𝑝𝑘/𝐸𝑎𝑐𝑐 objective space, with

√
𝑆𝑐/𝐸𝑎𝑐𝑐 in colour.

PARALLEL COORDINATE PLOTS
If there are only two objectives then selection can be rela-

tively straightforward as the points can be plotted to create a
2D Pareto front as shown in black in Fig. 1. The designer
can then easily select a point based on the trade off between
the two objectives. If there are three objectives, then colour
can be used to provide information about the third objec-
tive or a 3D plot could be used, however, as the number of
objectives increases, it becomes significantly more difficult
to visualise the data sets and select an individual final so-
lution. A comprehensive list of appropriate visualisation
techniques for Pareto optimal sets is given in [3] but we have
found that the parallel coordinate plot (PCP) provides the
best method for representing these sets, especially as the
number of dimensions grows larger than four. PCP’s dis-
play each solution as a piece-wise line that crosses equally
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Figure 2: Density PCP for X-band travelling wave cavity, showing input and output spaces. Red lines show where input
space could potentially be reduced for improved convergence speed. [3]

Figure 3: PCP showing Pareto optimal set for an optimized
TW structure with four objectives (𝐸𝑝𝑘/𝐸𝑎𝑐𝑐, 𝐵𝑝𝑘/𝐸𝑎𝑐𝑐,√
𝑆𝑐/𝐸𝑎𝑐𝑐 and Z). The inverse of three objectives are used

so that all objectives require maximising. Z is also shown in
colour for improved readability.

spaced y-axes, each of which represents a scale for a single
objective. The point where the line crosses each axis gives
the individual objective value, meaning that a large number
of objectives and therefore dimensions can be visualised on
a single plot. An example of a PCP with an entire Pareto
optimal set is shown in Fig. 3. Four objectives are shown,
with each quantity being normalized to 𝐸𝑎𝑐𝑐 and colour also
representing the shunt impedance to make identification of
the solutions with a large value easier. Trends in the set
are easily distinguished using this method, for example it
clearly shows that points that have a large Z also have a large
𝐸𝑝𝑘/𝐸𝑎𝑐𝑐 and that points with smaller values of 𝐸𝑝𝑘/𝐸𝑎𝑐𝑐

tend to have a larger value for
√
𝑆𝑐/𝐸𝑎𝑐𝑐.

PCP’s can also be used to visualise the entire input and
objective space as shown in Fig. 2. Here, the colour of the
lines represent the density of the solutions in that region.
This can be useful for gaining insight into which inputs ef-
fect which objectives and where potential constraints could
be placed to reduce the input space and increase the conver-
gence speed for the algorithm on future optimisation runs.
For example a constraint could be placed on 𝑥4 to reduce the
search space by half, as no optimal solutions have a value of
𝑥4 less than half of the maximum. Although these figures are
useful for discerning trends and providing information about
trade-offs between the objectives, it would be impossible to
select a single solution from the set as the ’best’ as the space
is almost continuous. Therefore before PCP’s can be used to
select an individual final solution, the Pareto optimal space
must be reduced.

CLUSTERING THE N-DIMENSIONAL
PARETO OPTIMAL OBJECTIVE SPACE
Although numerous mulit-dimensional visualisation tech-

niques exist, many of them suffer from the same problem
in that as the number of solutions to be visualised increases
past a certain point, it becomes more and more difficult to
distinguish the individual solutions and almost impossible
to select one individual point as the final design. In order to
deal with this issue, a number of methods exist that can be
used to reduce these large data sets [4]. Most of these meth-
ods rely on some form of dimensional reduction (DR) of the
solutions based on subjective decisions about the objectives
by the designer. These methods can be useful for dealing
with large data sets but information about the individual
points can be lost when DR is performed. Ideally, as much
information about the original solutions must be preserved
so that any selection that happens after this process still leads
to as close to an optimum design as possible.

We have found that the use of clustering algorithms such as
K-means [5] or the Agglomerative Hierarchical Clustering
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Figure 4: Mean standard deviation of objective cluster as a
function of number of clusters. [3]

algorithm [6] are the most appropriate tools for this job.
These methods can be used to group solutions based on their
input or objective values, and then a single representative
point of each cluster is chosen to be used in combination
with a multi-dimensional visualisation technique in order
to select a final design. In this way, thousands of points
can be reduced to hundreds or tens, making the set more
manageable.

A choice must be made about the number of clusters to
use for a given data set. If too few clusters are used, then
there will be significant overlap between the clusters, mak-
ing a selection between them meaningless. If too many
clusters are chosen then there is diminishing returns on the
process compared to using the raw data set. An investiga-
tion was made into the variation of the standard deviation
of each cluster with an increasing number of clusters with
Fig. 4 showing the results of this investigation. The standard
deviation drops rapidly until around 20 clusters, where it
starts to decrease at a reduced rate. After 35 clusters this
rate is again reduced making a choice of 25-35 clusters rea-
sonable for this data set. After the clusters are created, a
representative point must be selected to use on the PCP. The
representative point is found by giving each solution within
a cluster a weighted value. The equation used to determine
the individual solution weight is as follows:

𝑊𝑠𝑜𝑙𝑛 =

4∑︁
𝑛

[𝑜𝑏 𝑗 × 𝑟𝑎𝑛𝑔𝑒]𝑛,

where 𝑜𝑏 𝑗𝑛 is the 𝑛𝑡ℎ objective normalised value, and
𝑟𝑎𝑛𝑔𝑒𝑛 is the normalised range for that objective. This
weighting provides an accurate way to represent the individ-
ual cluster, which can then be used for visualisation.

SOLUTION SELECTION EXAMPLE
Fig. 5 shows a PCP of four objectives and 24 clusters

(clustered using Agglomerative Hierarchical Clustering) for
the Pareto optimal set. The inverse of the peak fields is used
so that all objectives require maximising, making it easier
to compare solutions. If for example, the cavity design was

limited only by 𝐸𝑝𝑘/𝐸𝑎𝑐𝑐, then cluster 1 could be chosen to
select the solution from, assuming that no limits are imposed
on the other objectives. This cluster is then opened to view
all the solutions and is shown in Fig. 6. As there is little
variation between the solutions within the cluster the final
solution could be picked based on minor preferences or
requirements for the other 3 objectives.

Figure 5: TW cavity objective space with four objectives
showing 24 clusters. [3]

Figure 6: Opened cluster from Fig 5 for a design limited by
𝐸𝑝𝑘/𝐸𝑎𝑐𝑐 [3]

CONCLUSION
Multi-objective genetic algorithms have been applied to

a 12 GHz TW single cell cavity design, generating a large
Pareto optimal set. Once the Pareto optimal set has been
found, Agglomerative Hierarchical Clustering has been used
to cluster the solutions to reduce the large data set. Finally,
PCP’s have been used to visualise the data making the pro-
cess of selecting of a final optimised design significantly
easier.
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