THPOPT —  Poster Session - Padthai   (16-Jun-22   16:00—18:00)
Paper Title Page
THPOPT001 Online Optimization of the ESRF-EBS Storage Ring Lifetime 2552
 
  • N. Carmignani, L.R. Carver, L. Hoummi, S.M. Liuzzo, T.P. Perron, P. Raimondi, S.M. White
    ESRF, Grenoble, France
 
  In the first year of op­er­a­tion of the EBS stor­age ring, on­line non­lin­ear dy­nam­ics op­ti­mi­sa­tions were per­formed to in­crease the Tou­schek life­time. Sev­eral sex­tu­pole, oc­tu­pole and skew quadru­pole knobs have been stud­ied in sim­u­la­tions and tested in the ma­chine. A fast op­ti­mi­sa­tion pro­ce­dure has been de­fined and it is fol­lowed at each ma­chine restart. The knobs and the op­ti­mi­sa­tion pro­ce­dure are de­scribed in the paper. As a re­sult, up to 41 h Tou­schek life­time in nom­i­nal multi-bunch mode have been achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT001  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT002 Beam Power Deposition on the Cryogenic Permanent Magnet Undulator 2556
 
  • L.R. Carver, C. Benabderrahmane, P. Brumund, N. Carmignanipresenter, J. Chavanne, G. Le Bec, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  X-rays with high bril­liance and low phase er­rors are gen­er­ated in the Cryo­genic Per­ma­nent Mag­net Un­du­la­tor (CPMU) cur­rently in use at the ESRF. In the event of a fail­ure of the cryo­genic cool­ing the beam will con­tinue to de­posit power into the mod­ule, even when the un­du­la­tor jaws are fully opened. This could lead to un­ac­cept­ably high heat­ing of the mag­net blocks which could cause their de­mag­neti­sa­tion. Im­ped­ance sim­u­la­tions were per­formed using IW2D and CST to com­pute the power de­posited by the beam in both the closed and open jaw set­tings. This was fol­lowed by ther­mal sim­u­la­tions to com­pute the ex­pected tem­per­a­ture rise. These re­sults will help ad­vise the op­er­a­tional pro­ce­dure in the event of a cool­ing fail­ure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT002  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT003 A First attempt at implementing TRIBs in BESSY III’s Design Lattice 2560
 
  • M. Arlandoo, P. Goslawski, M. Titzepresenter
    HZB, Berlin, Germany
 
  At HZB’s BESSY II and PTB’s Metrol­ogy Light Source (MLS), res­o­nances and is­lands in trans­verse phase space are ex­ploited in a spe­cial op­er­a­tion mode usu­ally re­ferred to as Trans­verse Res­o­nance Is­land Buck­ets (TRIBs). This mode pro­vides a sec­ond sta­ble orbit well sep­a­rated from the main orbit and one of its ap­pli­ca­tions in pho­ton sci­ence is the ul­tra-fast switch­ing of the he­lic­ity of cir­cu­larly po­lar­ized light pulses. In the con­text of the con­cep­tual de­sign study of BESSY III, it is under in­ves­ti­ga­tion how this spe­cial op­tics mode can be im­ple­mented in an MBA struc­ture and how it will im­pact the pho­ton source pa­ra­me­ters. In this paper we pre­sent a pre­lim­i­nary at­tempt at im­ple­ment­ing TRIBs in BESSY III’s de­sign lat­tice, a multi-bend achro­mat, by break­ing the sym­me­try of the lat­tice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT003  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT004 Design of a Compact 180-Degree Single-Shot Energy Spectrometer Based on a Halbach Dipole Magnet 2564
 
  • R. Bazrafshan, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, N.H. Matlis
    CFEL, Hamburg, Germany
  • F.X. Kaernter
    DESY, Hamburg, Germany
 
  In the AXSIS pro­ject at DESY, we de­velop com­pact THz ac­cel­er­at­ing struc­tures for a table-top x-ray source. Ac­cel­er­a­tion is achieved by pass­ing the elec­tron beam through a di­elec­tric-loaded wave­guide pow­ered by multi-cy­cle THz ra­di­a­tion. The final elec­tron en­ergy strongly de­pends on THz-power in­jected into the LINAC and tim­ing. Thus in first ex­per­i­ments we ex­pect large en­ergy fluc­tu­a­tions and a large range of en­er­gies to cover. We de­signed an elec­tron en­ergy spec­trom­e­ter for a wide range of final en­er­gies cov­er­ing 5 to 20 MeV in a sin­gle-shot. Here, we pre­sent the de­sign of an en­ergy spec­trom­e­ter which uses a com­pact di­pole mag­net based on the Hal­bach array con­cept to de­flect the elec­tron beam through a 180° path in­ter­cepted by a Fiber Optic Scin­til­la­tor (FOS) mounted in­side the vac­uum per­pen­dic­u­lar to the beam. The 180-de­gree bend­ing geom­e­try pro­vides the pos­si­bil­ity of hav­ing the focus point of all en­er­gies at the same dis­tance from the mag­net edge which makes the de­sign sim­pler and more com­pact. It also re­moves the ne­ces­sity of in­stalling a safety di­pole at the end of the ac­cel­er­a­tor. A slit sys­tem at the spec­trom­e­ter en­trance in­creases res­o­lu­tion to bet­ter than 0.2%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT004  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT005 Field Enhanced, Compact S-Band Gun Employing a Pin Cathode 2567
SUSPMF020   use link to see paper's listing under its alternate paper code  
 
  • R. Bazrafshan, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, K. Flöttmann, F.X. Kaernter
    DESY, Hamburg, Germany
  • N.H. Matlis
    CFEL, Hamburg, Germany
 
  S-band RF-guns are highly de­vel­oped for pro­duc­tion of low emit­tance rel­a­tivis­tic elec­tron bunches, but need pow­er­ful kly­strons for dri­ving. Here, we pre­sent the de­sign and first ex­per­i­men­tal tests of a com­pact S-band gun, which can ac­cel­er­ate elec­trons up to 180 keV pow­ered by only 10 kW from a com­pact rack-mount­able solid-state am­pli­fier. A pin-cath­ode is used to en­hance the RF elec­tric field on the cath­ode up to 100 MV/m as in large-scale S-band guns. An elec­tron bunch is gen­er­ated through pho­toe­mis­sion off a flat cop­per sur­face on the pin ex­cited by a UV laser pulse fol­lowed by a fo­cus­ing so­le­noid pro­duc­ing a low emit­tance bunch with 0.1 mm mrad trans­verse emit­tance for up to 100 fC bunch charge. We are cur­rently in the con­di­tion­ing phase of the gun and first ex­per­i­ments show good agree­ment with sim­u­la­tions. The com­pact gun will serve three pur­poses: (i) it can be used di­rectly for ul­tra­fast elec­tron dif­frac­tion; (ii) as an in­jec­tor into a THz booster pro­duc­ing 0.3MeV to 2 MeV elec­tron bunches for ul­tra­fast elec­tron dif­frac­tion; (iii) The sys­tem in (ii) serves as an in­jec­tor into a THz lin­ear ac­cel­er­a­tor pro­duc­ing a 20 MeV beam for the AXSIS X-ray source pro­ject.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT005  
About • Received ※ 21 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT006 Beam Dynamics Observations at Negative Momentum Compaction Factors at KARA 2570
 
  • P. Schreiber, M. Brosi, B. Härer, A. Mochihashi, A.-S. Müller, A.I. Papash, R. Ruprecht, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: We are supported by the DFG-funded "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" and European Union’s Horizon 2020 research and innovation programme (No 730871)
For the de­vel­op­ment of fu­ture syn­chro­tron light sources new op­er­a­tion modes often have to be con­sid­ered. One such mode is the op­er­a­tion with a neg­a­tive mo­men­tum com­paction fac­tor to pro­vide the pos­si­bil­ity of in­creased dy­namic aper­ture. For suc­cess­ful ap­pli­ca­tion in fu­ture light sources, the in­flu­ence of this mode has to be in­ves­ti­gated. At the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor), op­er­a­tion with neg­a­tive mo­men­tum com­paction has been im­ple­mented and the dy­nam­ics can now be in­ves­ti­gated. Using a va­ri­ety of high-per­for­mance beam di­ag­nos­tics de­vices it is pos­si­ble to ob­serve the beam dy­nam­ics under neg­a­tive mo­men­tum com­paction con­di­tions. This con­tri­bu­tion pre­sents dif­fer­ent as­pects of the re­sults of these in­ves­ti­ga­tions in the lon­gi­tu­di­nal and trans­ver­sal plane.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT006  
About • Received ※ 08 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 08 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT007 High Bunch Charges in the Second Injection Beamline of MESA 2574
 
  • A.A. Kalamaiko, K. Aulenbacher, M.A. Dehn, S. Friederich, C.P. Stollpresenter
    KPH, Mainz, Germany
 
  MESA (Mainz En­ergy-re­cov­er­ing Su­per­con­duct­ing Ac­cel­er­a­tor) is an ac­cel­er­a­tor with two laser-dri­ven elec­tron sources (po­lar­ized and un­po­lar­ized) op­er­at­ing at 100 kV which is under con­struc­tion at the Jo­hannes Guten­berg Uni­ver­sity in Mainz. The un­po­lar­ized elec­tron source MIST (MESA In­jec­tor Source Two) al­lows to pro­duce high charged elec­tron bunches with charge up to 7.7 pC. This source and a Mott po­larime­ter will be arranged on the same height above the MESA in­jec­tor main beam­line. A par­al­lel shift­ing beam­line was de­vel­oped which al­lows to trans­port high charged beam from the source MIST to the main MESA beam­line. More­over, the de­signed beam­line al­lows to trans­port beam from the elec­tron source STEAM to the Mott po­larime­ter. This re­port is ded­i­cated to the de­sign of the sep­a­ra­tion beam­line which trans­ports and com­presses highly charged elec­tron bunches from the elec­tron source MIST to the first ac­cel­er­a­tion sec­tion of MESA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT007  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT008 Beam Orbit Shift Due to BPM Thermal Deformation Using Machine Learning 2577
 
  • K.M. Chen, M. Hosaka, F.Y. Wang, G. Wang, Z. Wang, W. Xu
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • L. Guopresenter
    Nagoya University, Nagoya, Japan
 
  Sta­bi­liz­ing beam orbit is crit­i­cal for ad­vanced syn­chro­tron ra­di­a­tion light sources. The beam orbit can be af­fected by many sources. To main­tain a good orbit sta­bil­ity, global orbit feed­back sys­tems (OFB) has been widely used. How­ever, the BPM ther­mal de­for­ma­tion would lead to BPM mis­read­ing, which can not be han­dled by OFB. Usu­ally, extra di­ag­nos­tics, such as po­si­tion trans­duc­ers, is needed to mea­sure the de­for­ma­tion de­pen­dency of BPM read­ings. Here, an al­ter­na­tive ap­proach by using the ma­chine op­er­a­tion his­toric data, in­clud­ing BPM tem­per­a­ture, in­ser­tion de­vice (ID) gaps and cor­rec­tor cur­rents, is pre­sented. It is demon­strated at Hefei Light Source (HLS). The av­er­age orbit shift due to BPM ther­mal de­for­ma­tion is about 34.5 mi­crons/de­gree Cel­sius (hor­i­zon­tal) and 20.0 mi­crons/de­gree Cel­sius (ver­ti­cal).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT008  
About • Received ※ 19 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT009 Dependency Measurement of BPM Reading in the HLS-II Storage Ring 2580
 
  • G. Wang, K.M. Chen, G. Feng, M. Hosaka, Z. Wang, W. Xu
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • L. Guopresenter
    Nagoya University, Nagoya, Japan
  • S.W. Wang
    DLS, Oxfordshire, United Kingdom
 
  Beam orbit sta­bil­ity is es­sen­tial for the op­er­a­tion of the stor­age ring based light sources. Orbit feed­back sys­tems are com­monly adopted to main­tain the beam on a ref­er­ence orbit. How­ever, the BPM read­ing could be af­fected by its tem­per­a­ture, beam cur­rent, etc, which leads to shift of the beam ref­er­ence orbit. On­line ex­per­i­ment is car­ried out in the HLS-II stor­age ring to study the de­pen­dence of the beam ref­er­ence orbit on the BPM tem­per­a­ture and beam cur­rent. The re­sult shows that the av­er­age change of BPM read­ings due to BPM tem­per­a­ture is about 37.4 ’m/’C hor­i­zon­tally and 11.5 ’m/’C ver­ti­cally. The av­er­age change of BPM read­ings in­duced by beam cur­rent is about 0.27 ’m/mA hor­i­zon­tally and 0.20 ’m/mA ver­ti­cally.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT009  
About • Received ※ 19 May 2022 — Revised ※ 23 June 2022 — Accepted ※ 27 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT010 Beam Loss Reduction During Energy Ramp-Up at the SAGA-LS 2583
 
  • Y. Iwasaki
    SAGA, Tosu, Japan
 
  The ac­cel­er­a­tor of the SAGA Light Source (SAGA-LS) con­sists of a 255 MeV in­jec­tor linac and a 1.4 GeV stor­age ring. The en­ergy of the elec­trons is ramped up to 1.4 GeV in 4 min­utes in the stor­age ring. The elec­tron beam cur­rent stored in the stor­age ring is about 300 mA. At the beg­ging of the en­ergy ramp-up, the elec­tron beam was lost like step func­tion. The lost beam cur­rent was nor­mally about 5 mA to 30 mA. To un­der­stand the beam loss mech­a­nism, we de­vel­oped si­mul­ta­ne­ous image log­ging sys­tem of beam pro­file in ad­di­tion to the beam cur­rent, the mag­nets power sup­plies, and the beam po­si­tions using Na­tional In­stru­ments PXI. It was found that the ver­ti­cal beam size was grow­ing in the step-like beam loss process. The small per­tur­ba­tion of the out­put cur­rents of the quadru­pole power sup­plies caused the ver­ti­cal beam size growth. By op­ti­miz­ing the ramp-up pat­tern of the quadru­pole power sup­plies, sex­tu­pole power sup­plies, and the steer­ing power sup­plies for the orbit con­trol, we have achieved the re­duc­tion of the step-like beam loss and total time of the ramp-up.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT010  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT013 Emittance Reduction with the Variable Dipole for the ELETTRA 2.0 Ring 2586
 
  • A. Poyet, Y. Papaphilippou
    CERN, Meyrin, Switzerland
  • M.A. Domínguez, F. Toral
    CIEMAT, Madrid, Spain
  • R. Geometrante, E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R. Geometrante
    KYMA, Trieste, Italy
 
  ELET­TRA is a 2/2.4 GeV third-gen­er­a­tion elec­tron stor­age ring, lo­cated near Tri­este, Italy. In view of a sub­stan­tial in­crease of the ma­chine per­for­mance in terms of bril­liance, the so-called ELET­TRA 2.0 up­grade is cur­rently on-go­ing. This up­grade is based on a 6-bends achro­mat, four dipoles of which hav­ing a lon­gi­tu­di­nally vari­able field. So far, those dipoles are fore­seen to pro­vide a field with a two step pro­file. The VAri­able Di­pole for the ELET­TRA Ring (VADER) task, dri­ven by the I.​FAST Eu­ro­pean pro­ject, aims at de­vel­op­ing a new di­pole de­sign based on a trape­zoidal shape of the bend­ing ra­dius, which would allow for a fur­ther re­duc­tion of the hor­i­zon­tal emit­tance. A pro­to­type of this mag­net should be de­signed by the CIEMAT lab­o­ra­tory and built by KYMA com­pany. This paper dis­cusses the new di­pole field spec­i­fi­ca­tion and de­scribes the cor­re­spond­ing op­tics op­ti­miza­tion that was per­formed in order to re­duce at best the emit­tance of the ELET­TRA ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT013  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT014 Simulation and Optimization of SPS-II Linac 2590
 
  • T. Chanwattana, S. Chunjarean, N. Juntong, S. Klinkhieo, P. Sudmuang
    SLRI, Nakhon Ratchasima, Thailand
  • K. Manasatitpong
    Synchrotron Light Research Institute (SLRI), Muang District, Thailand
 
  Siam Pho­ton Source II (SPS-II), the new 3-GeV syn­chro­tron light source pro­ject in Thai­land, has been de­signed based on an ac­cel­er­a­tor sys­tem con­sist­ing of a 150-MeV in­jec­tor linac, a full-en­ergy booster syn­chro­tron and a stor­age ring based on a Dou­ble Triple Bend Achro­mat (DTBA) lat­tice. A turn-key linac sys­tem has been used in an in­jec­tion sys­tem of many syn­chro­tron fa­cil­i­ties, and thus it is con­sid­ered for the SPS-II pro­ject. Pre­lim­i­nary beam dy­nam­ics sim­u­la­tion and op­ti­miza­tion of the SPS-II linac are nec­es­sary for in­ves­ti­gat­ing achiev­able beam pa­ra­me­ters which can be used for study of beam in­jec­tion through a trans­fer line to the booster. Multi-ob­jec­tive op­ti­miza­tion al­go­rithm (MOGA) has been used in de­sign and op­ti­miza­tion of many ac­cel­er­a­tors in­clud­ing a linac sys­tem for syn­chro­tron light sources, sim­i­lar to the SPS-II linac. In this paper, re­sults of beam dy­nam­ics sim­u­la­tion and MOGA op­ti­miza­tion of the SPS-II linac are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT014  
About • Received ※ 19 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT015 The Design of the Full Energy Beam Exploitation (FEBE) Beamline on CLARA 2594
 
  • A.R. Bainbridge, D. Angal-Kalinin, J.K. Jones, T.H. Pacey, Y.M. Saveliev, E.W. Snedden
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA fa­cil­ity at Dares­bury Lab­o­ra­tory was orig-in­ally de­signed for the study of novel FEL physics utilis-ing high-qual­ity elec­tron bunches at up to 250 MeV/c. To max­imise the ex­ploita­tion of the ac­cel­er­a­tor com­plex, a ded­i­cated full en­ergy beam ex­ploita­tion (FEBE) beam-line has been de­signed and is cur­rently being in­stalled in a sep­a­rate vault on the CLARA ac­cel­er­a­tor. FEBE will allow the use of high charge (up to 250 pC), mod­er­ate en­ergy (up to 250 MeV), elec­tron bunches for a wide va­ri­ety of ac­cel­er­a­tor ap­pli­ca­tions crit­i­cal to on­go­ing ac­cel­er­a­tor de­vel­op­ment in the UK and in­ter­na­tional com­mu­ni­ties. The fa­cil­ity con­sists of a shielded en­clo-sure, ac­ces­si­ble dur­ing beam run­ning in CLARA, with two very large ex­per­i­men­tal cham­bers com­pat­i­ble with a wide range of ex­per­i­men­tal pro­pos­als. High-power laser beams (up to 100 TW) will be avail­able for elec­tron-beam in­ter­ac­tions in the first cham­ber, and there are con­crete plans for a wide va­ri­ety of ad­vanced di­ag­nos­tics (in­clud-ing a high-field per­ma­nent mag­net spec­trom­e­ter and di­elec­tric lon­gi­tu­di­nal streaker), es­sen­tial for mul­ti­ple ex­per­i­men­tal par­a­digms, in the sec­ond cham­ber. FEBE will be com­mis­sioned in 2024.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT015  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT016 Commissioning Simulations for the DIAMOND-II Upgrade 2598
 
  • H.C. Chao, R.T. Fielder, J. Kallestrup, I.P.S. Martin, B. Singh
    DLS, Oxfordshire, United Kingdom
 
  The Di­a­mond-II stor­age ring, com­pared to Di­a­mond, im­proves the nat­ural beam emit­tance from 2.7 nm to 160 pm and the beam en­ergy from 3 to 3.5 GeV. The num­ber of straight sec­tions is also dou­bled from 24 to 48 thanks to the mod­i­fied hy­brid six-bend-achro­mat lat­tice. To re­duce the im­pact on the ex­ist­ing sci­ence pro­gram, the dark time pe­riod must be min­imised. To as­sist in this aim, stor­age ring com­mis­sion­ing sim­u­la­tions have been car­ried out to pre­dict and re­solve pos­si­ble is­sues. These stud­ies in­clude beam com­mis­sion­ing start­ing from on-axis first-turn beam thread­ing up to beam based align­ment and full lin­ear op­tics cor­rec­tion with stored beam. The lin­ear op­tics cor­rec­tions with in­ser­tion de­vices are also in­cluded. The ma­chine char­ac­ter­i­sa­tions at dif­fer­ent stages are com­pared. Con­sid­er­a­tions on re­al­is­tic cham­ber lim­i­ta­tions, error de­f­i­n­i­tions and some com­mis­sion­ing strate­gies are also dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT016  
About • Received ※ 19 May 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT017 Orbit Stability Studies for the Diamond-II Storage Ring 2602
 
  • I.P.S. Martin, C.A. Abraham, D. Crivelli, H. Ghasempresenter, B. Nicholson, T. Olsson, P. Sanchez Navarro
    DLS, Oxfordshire, United Kingdom
 
  The pho­ton-beam po­si­tional sta­bil­ity rel­a­tive to the beam size is a key per­for­mance pa­ra­me­ter for stor­age ring light sources. The nat­ural emit­tance of the Di­a­mond-II ring will be low­ered by a fac­tor 16.7 com­pared to the ex­ist­ing ring, so the ab­solute sta­bil­ity re­quire­ment for the elec­tron beam must re­duce ac­cord­ingly. In ad­di­tion, ad­vances in de­tec­tor speed and res­o­lu­tion mean the tol­er­ances are tighter com­pared to pre­vi­ous gen­er­a­tions of stor­age rings, with a tar­get of 3 % of beam size up to 1 kHz hav­ing been adopted for Di­a­mond-II. In this paper we pre­sent stud­ies of how the an­tic­i­pated ground vi­bra­tions, girder mo­tion and power sup­ply rip­ple will af­fect the elec­tron beam sta­bil­ity as a func­tion of fre­quency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT017  
About • Received ※ 08 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT018 Aperture Sharing Injection for Diamond-II 2606
 
  • J. Kallestrup, H. Ghasempresenter, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  The planned Di­a­mond-II stor­age ring will pro­vide users with an in­crease in bright­ness of up to two or­ders of mag­ni­tude com­pared with the ex­ist­ing Di­a­mond fa­cil­ity. The aim is to main­tain ex­cel­lent pho­ton beam sta­bil­ity in top-up mode, which re­quires fre­quent in­jec­tions. This paper in­tro­duces the aper­ture shar­ing in­jec­tion scheme de­signed for Di­a­mond-II. The scheme promises, through the use of short striplines equipped with high-volt­age nano-sec­ond pulsers, a quasi-trans­par­ent in­jec­tion while main­tain­ing an ap­prox­i­mately 100% in­jec­tion ef­fi­ciency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT018  
About • Received ※ 31 May 2022 — Accepted ※ 30 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT019 Multi-Alkali Antimonide Photocathode Development for High Brightness Beams 2610
 
  • S. Mistry, T. Kamps, J. Kühn, C. Wang
    HZB, Berlin, Germany
  • T. Kamps
    HU Berlin, Berlin, Germany
  • C. Wang
    University Siegen, Siegen, Germany
 
  Funding: This work is funded by the DFG CO 1509/10-1 | MI 2917/1-1
Pho­to­cath­ode R&D at the Helmholtz-Zen­trum Berlin (HZB) is dri­ven by the mo­ti­va­tion to pro­duce high bright­ness elec­tron beams for the SRF pho­toin­jec­tor test fa­cil­ity, Sealab/ bERLinPro. Multi-al­kali an­ti­monides are the choice pho­to­cath­ode ma­te­r­ial due to high quan­tum ef­fi­ciency (QE) and low in­trin­sic emit­tance in the vis­i­ble range. In this work a more ro­bust al­ter­na­tive to the tried and tested Cs-K-Sb is con­sid­ered. Na-K-Sb of­fers sim­i­lar ad­van­tages to Cs-K-Sb in­clud­ing, high QE at green wave­lengths but more­over, it of­fers ex­cel­lent sta­bil­ity at el­e­vated tem­per­a­tures. This prop­erty could lengthen the cath­ode life­time by en­hanc­ing the ro­bust­ness of the pho­to­cath­ode in­side the SRF gun. In this work, a sta­tus re­port show­cas­ing first re­sults to­wards the de­vel­op­ment of a growth pro­ce­dure for Na-K-Sb is pre­sented by means of spec­tral re­sponse and XPS mea­sure­ments con­ducted in the HZB pho­to­cath­ode lab.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT019  
About • Received ※ 03 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT020 Status and Plans for the New CLS Electron Source Lab 2614
 
  • M.J. Boland, D. Bertwistle, F. Le Pimpec
    CLS, Saskatoon, Saskatchewan, Canada
  • X.F.D. Stragier
    TUE, Eindhoven, The Netherlands
 
  The Cana­dian Light Source (CLS) has re­cently cre­ated a new Elec­tron Source Lab (ESL) that can run in­de­pen­dently from user op­er­a­tions. A sec­tion of the old Saskatchewan Ac­cel­er­a­tor Lab­o­ra­tory ex­per­i­men­tal nu­clear physics tun­nels has been re­built with new shield­ing and a sep­a­rate en­trance. The lab­o­ra­tory will be used to pre­pare an op­er­a­tional spare elec­tron gun for the 250 MeV linac. In ad­di­tion, there are plans to de­velop RF guns for a fu­ture branch line to in­ject into the linac and for pos­si­ble short pulse pro­duc­tion. This paper will give an overview of the ESL space and the first elec­tron guns which plan to be in­stalled.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT020  
About • Received ※ 16 June 2022 — Revised ※ 29 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT022 Study on QE Evolution of Cs₂Te Photocathodes in ELBE SRF Gun-II 2617
 
  • R. Xiang, A. Arnold, S. Ma, P. Michelpresenter, P. Murcek, A.A. Ryzhov, J. Schaber, J. Teichert, P.Z. Zwartek
    HZDR, Dresden, Germany
 
  The qual­ity of the pho­to­cath­odes is crit­i­cal for the sta-bil­ity and re­li­a­bil­ity of the pho­toin­jec­tor’s op­er­a­tion. Thanks to the ro­bust mag­ne­sium and Cs2Te pho­to­cath­odes, SRF gun-II at HZDR has been proven to be a suc-cess­ful ex­am­ple in CW mode for high cur­rent user op­er­a­tion. In this con­tri­bu­tion, we will pre­sent our ob­ser­va­tion of the QE evo­lu­tion of Cs2Te pho­to­cath­odes dur­ing SRF gun op­er­a­tion. The vari­ables in­clud­ing sub­strate sur­face, film thick­ness, Cs/Te sto­i­chio­met­ric, mul­ti­pact­ing, RF load­ing and charge ex­tract are con­sid­ered in the analy­sis.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT022  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT023 Flexible Features of the Compact Storage Ring in the cSTART Project at Karlsruhe Institute of Technology 2620
 
  • A.I. Papash, A. Bernhard, E. Bründermann, D. El Khechen, B. Härer, A.-S. Müller, R. Ruprecht, J. Schaeferpresenter, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Within the cSTART pro­ject (com­pact stor­age ring for ac­cel­er­a­tor re­search and tech­nol­ogy), a Very Large Ac­cep­tance com­pact Stor­age Ring (VLA-cSR) will be re­al­ized at the In­sti­tute for Beam Physics and Tech­nol­ogy (IBPT) of the Karl­sruhe In­sti­tute of Tech­nol­ogy. (KIT). A mod­i­fied geom­e­try of a com­pact stor­age ring op­er­at­ing at 50 MeV en­ergy range has been stud­ied and main fea­tures of the new model are de­scribed here. The new de­sign, based on 45° bend­ing mag­nets, is suit­able to store a wide mo­men­tum spread beam as well as ul­tra-short elec­tron bunches in the sub-ps range in­jected from the plasma cell as well as from the Fer­n­in­frarot Linac- Und Test Ex­per­i­ment (FLUTE). The DBA lat­tice of the VLA-cSR with dif­fer­ent set­tings and re­laxed pa­ra­me­ters, split el­e­ments and higher order op­tics of tol­er­a­ble strength al­lows to im­prove the dy­namic aper­ture and mo­men­tum ac­cep­tance to an ac­cept­able level. This con­tri­bu­tion dis­cusses the lat­tice fea­tures in de­tail, ex­pected life­time, in­jec­tion, tol­er­ances and dif­fer­ent pos­si­ble op­er­a­tion schemes of the ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT023  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT024 MIST - The MESA-Injector Source Two 2624
 
  • M.A. Dehn, P.S. Plattnerpresenter
    IKP, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    KPH, Mainz, Germany
 
  Funding: Work supported by the German science ministry BMBF through Verbundforschung
The new ac­cel­er­a­tor MESA (Mainz En­ergy Re­cov­er­ing Su­per­con­duct­ing Ac­cel­er­a­tor) will pro­vide an av­er­age CW elec­tron beam cur­rent of up to 10 mA. Op­er­at­ing at 1.3 GHz, this cor­re­sponds to a bunch charge of 7.7 pC. The new DC pho­toe­mis­sion source MIST is op­ti­mized for these re­quire­ments. A chal­lenge is heat­ing of the pho­to­cath­ode at high laser power. By a suit­able me­chan­i­cal con­struc­tion and the use of spe­cific ma­te­ri­als, the heat can be dis­si­pated dur­ing op­er­a­tion. Op­tions for fur­ther im­prove­ments are dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT024  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT025 Photocathode Stress Test Bench at INFN LASA 2627
 
  • D. Sertore, D. Giove, L. Monaco
    INFN/LASA, Segrate (MI), Italy
  • A. Bacci, F. Canella, S. Cialdi, I. Drebotpresenter, D. Giannotti, L. Serafini
    INFN-Milano, Milano, Italy
  • D. Cipriani, E. Suerra
    Università degli Studi di Milano, Milano, Italy
  • G. Galzerano
    POLIMI, Milano, Italy
  • G. Guerini Rocco
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  A UHV test bench based on a 100 kV DC gun and a 100 MHz rep­e­ti­tion rate laser has been setup up at INFN LASA to test Cs2Te pho­to­cath­odes. This op­er­a­tion mode is the base­line of the BriXSinO pro­ject, cur­rently in the de­sign phase in our lab­o­ra­tory, and the qual­i­fi­ca­tion of the Cs2Te pho­to­cath­odes is a key issue. In this paper, we pre­sent the re­cent ad­vances in the dif­fer­ent as­pects of this R&D ac­tiv­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT025  
About • Received ※ 10 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT026 Assembly and Characterization of Low-Energy Electron Transverse Momentum Measurement Device (TRAMM) at INFN LASA 2630
 
  • D. Sertore, M. Bertuccipresenter, A. Bosotti, D. Giove, L. Monaco, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • G. Guerini Rocco, C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  In the frame­work of high-bright­ness elec­tron beam gen­er­a­tion, ther­mal emit­tance is nowa­days a key pa­ra­me­ter. While al­kali tel­lurides are ex­ten­sively used in ad­vanced elec­tron sources, al­kali an­ti­monides pho­to­cath­odes demon­strated high QE in the vis­i­ble, thus mak­ing fea­si­ble CW op­er­a­tions for RF-based pho­toin­jec­tors. The INFN LASA lab­o­ra­tory in Milan is fully equipped with ded­i­cated pro­duc­tion sys­tems for pho­to­cath­ode prepa­ra­tion and op­ti­cal setup for QE eval­u­a­tion. In this paper, we de­scribe a newly de­signed de­vice ded­i­cated to elec­tron trans­verse mo­men­tum mea­sure­ment (TRAMM). It will be con­nected to the main pro­duc­tion cham­bers and will serve as an "emit­tance mon­i­tor­ing" sys­tem dur­ing pho­to­cath­ode growth. From the de­sign phase, through the pa­ra­me­ter es­ti­mate, as­sem­bly of the com­po­nents, to the in­stal­la­tion and first mea­sure­ments, we de­scribe the sta­tus of this pro­ject and its fu­ture de­vel­op­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT026  
About • Received ※ 09 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT027 R&D on High QE Photocathodes at INFN LASA 2633
 
  • D. Sertore, M. Bertuccipresenter, L. Monaco
    INFN/LASA, Segrate (MI), Italy
  • G. Guerini Rocco
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S.K. Mohanty, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  We pre­sent the re­cent ac­tiv­i­ties on an­ti­monide and tel­luride al­kali based pho­to­cath­odes at INFN LASA. The R&D on Cs2Te ma­te­ri­als is fo­cused on in­ves­ti­gat­ing ef­fects of ma­te­r­ial thick­ness and growth pro­ce­dures on the pho­to­cath­odes per­for­mances dur­ing op­er­a­tion in RF guns. We aim to im­prove ther­mal emit­tance and long term sta­bil­ity of these films. The more re­cent work on al­kali an­ti­monide showed the need for sub­stan­tial im­prove­ments in sta­bil­ity and QE dur­ing op­er­a­tion. We pre­sent here our re­cent achieve­ments and plans for fu­ture ac­tiv­i­ties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT027  
About • Received ※ 09 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT028 Dependence of CsK2Sb Photocathode Performance on the Quality of Graphene Substrate Film 2637
 
  • L. Guo, K. Goto, Y. Takashima
    Nagoya University, Nagoya, Japan
  • H. Yamaguchi
    LANL, Los Alamos, New Mexico, USA
  • M. Yamamoto
    KEK, Ibaraki, Japan
 
  Funding: U.S.-Japan Science and Technology Cooperation Program in High Energy Physics
A pho­to­cath­ode that ex­tracts elec­trons by ir­ra­di­at­ing a semi­con­duc­tor or metal with a laser is ap­plied to ad­vanced ac­cel­er­a­tors and elec­tron mi­cro­scopes as a high-per­for­mance cath­ode. In par­tic­u­lar, the CsK2Sb pho­to­cath­ode is of in­ter­est be­cause it has fea­tures such as low emit­tance, ex­citabil­ity with vis­i­ble light, and high quan­tum ef­fi­ciency. Gen­er­ally, the CsK2Sb pho­to­cath­ode is pro­duced by de­posit­ing a cath­ode el­e­ment on a sub­strate, so that the cath­ode per­for­mance strongly de­pends on the sur­face con­di­tion of the sub­strate. We have found graphene as reusable sub­strate, which has the prop­erty of being chem­i­cally in­ac­tive. In this study, graphene film qual­ity de­pen­dence of CsK2Sb photo-cath­ode per­for­mance was eval­u­ated. Specif­i­cally, CsK2Sb cath­ode was de­posited using dif­fer­ent qual­ity graphene film sub­strates and their QE val­ues and uni­for­mity were com­pared. The qual­ity of graphene films was an­a­lyzed using X-ray Pho­to­elec­tron Spec­troscopy (XPS) and X-ray ab­sorp­tion spec­troscopy (XAS). We found that the graphene film can be cleaned by heat­ing at 500 deg. The QE of the cath­ode on a good qual­ity graphene film was higher and more uni­form than that on a poor qual­ity graphene film.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT028  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT029 Study on the Performance Improvement of Alkali Antimonide Photocathodes for Radio Frequency Electron Guns 2640
 
  • R. Fukuoka, K. Ezawa, Y. Koshiba, M. Washio
    Waseda University, Tokyo, Japan
  • K. Sakaue
    The University of Tokyo, Graduate School of Engineering, Bunkyo, Japan
 
  Semi­con­duc­tor pho­to­cath­odes such as Cs-Te and Cs-K-Sb are used as elec­tron sources in ac­cel­er­a­tors to gen­er­ate high bright­ness beams using radio fre­quency (rf) elec­tron guns. Al­kali an­ti­monide pho­to­cath­odes have a high quan­tum ef­fi­ciency (Q.E.) of ~10%, and their ex­ci­ta­tion wave­length is in the vis­i­ble light re­gion (532 nm), so that they are ex­pected to re­duce the re­quire­ments on the op­ti­cal sys­tem and in­crease the amount of charge com­pared to Cs-Te. How­ever, al­kali an­ti­monide pho­to­cath­odes have a short life­time and de­grade under poor vac­uum con­di­tions, so it is es­sen­tial to im­prove dura­bil­ity by pro­tec­tive film coat­ings. There­fore, we are cur­rently work­ing on the fab­ri­ca­tion of high Q.E. al­kali an­ti­monide pho­to­cath­odes that can with­stand the Q.E. re­duc­tion dur­ing coat­ing. In this pre­sen­ta­tion, we will re­port the re­sults of com­par­i­son be­tween the fab­ri­cated al­kali an­ti­monide pho­to­cath­ode and Cs-Te pho­to­cath­ode, and fu­ture prospects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT029  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT030 Design Study of 30 MeV Linac for a Compact THz Radiation Source 2643
 
  • S. Jummunt, S. Chunjarean, N. Juntong, S. Klinkhieo
    SLRI, Nakhon Ratchasima, Thailand
  • K. Manasatitpong
    Synchrotron Light Research Institute (SLRI), Muang District, Thailand
 
  Funding: This work is supported by Science, Research, and Innovation Fund (SRI Fund)
A com­pact THz ra­di­a­tion source plays a pos­si­bil­ity to achieve in­tense THz ra­di­a­tion at tun­able fre­quen­cies be­tween 0.5 and 5.0 THz, with a peak power of sev­eral MW and nar­row-band­width. This source re­quires es­sen­tially the re­li­able high gra­di­ent s-band lin­ear ac­cel­er­a­tor (linac) to pro­vide an elec­tron beam en­ergy up to 30 MeV with high bunch charge. In order to ob­tain a high gra­di­ent linac men­tioned, the cav­ity struc­ture has been op­ti­mized and per­formed using the soft­ware CST. The pre­lim­i­nary de­sign of linac and beam dy­nam­ics study are pre­sented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT030  
About • Received ※ 14 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT031 SUNDAE1: A Liquid Helium Vertical Test-Stand for 2m Long Superconducting Undulator Coils 2646
 
  • B. Marchetti, S. Abeghyan, J.E. Baaderpresenter, S. Casalbuoni, M. Di Felice, U. Englisch, V. Grattoni, D. La Civita, M. Vannoni, M. Yakopov, P. Ziolkowski
    EuXFEL, Schenefeld, Germany
  • S. Barbanotti, H.-J. Eckoldt, A. Hauberg, K. Jensch, S. Lederer, L. Lilje, R. Ramalingam, T. Schnautz, R. Zimmermann
    DESY, Hamburg, Germany
  • A.W. Grau
    KIT, Karlsruhe, Germany
 
  Su­per­con­duct­ing Un­du­la­tors (SCUs) can pro­duce higher pho­ton flux and cover a wider pho­ton en­ergy range com­pared to per­ma­nent mag­net un­du­la­tors (PMUs) with the same vac­uum gap and pe­riod length. To build the know-how to im­ple­ment su­per­con­duct­ing un­du­la­tors for fu­ture up­grades of the Eu­ro­pean XFEL fa­cil­ity, two mag­netic mea­sure­ment test stands named SUN­DAE 1 and 2 (Su­per­con­duct­ing UN­Du­lA­tor Ex­per­i­ment) are being de­vel­oped. SUN­DAE1 will fa­cil­i­tate re­search and de­vel­op­ment on mag­net de­sign thanks to the pos­si­bil­ity of train­ing new SCU coils and char­ac­ter­iz­ing their mag­netic field. The ex­per­i­men­tal setup will allow the char­ac­ter­i­za­tion of mag­nets up to 2m in length. These mag­nets will be im­mersed in a He­lium bath at 2K or 4K tem­per­a­ture. In this ar­ti­cle, we de­scribe the ex­per­i­men­tal setup and high­light its ex­pected per­for­mances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT031  
About • Received ※ 03 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT032 SUNDAE2 at EuXFEL: A Test Stand to Characterize the Magnetic Field of Superconducting Undulators 2649
 
  • J.E. Baader, S. Abeghyan, S. Casalbuoni, D. La Civita, B. Marchetti, M. Yakopov, P. Ziolkowski
    EuXFEL, Schenefeld, Germany
  • H.-J. Eckoldt, A. Hauberg, S. Lederer, L. Lilje, T. Wohlenberg, R. Zimmermann
    DESY, Hamburg, Germany
  • A.W. Grau
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Eu­ro­pean XFEL fore­sees a su­per­con­duct­ing un­du­la­tor (SCU) af­ter­burner in the SASE2 hard X-ray beam­line. It con­sists of six 5m-long un­du­la­tor mod­ules with a 5mm vac­uum gap, where each mod­ule con­tains two 2m-long coils and one phase shifter. Prior to in­stal­la­tion, the mag­netic field must be mapped ap­pro­pri­ately. Two mag­netic mea­sure­ment test stands named SUN­DAE 1 and 2 (Su­per­con­duct­ing UN­Du­lA­tor Ex­per­i­ment) are being de­vel­oped at Eu­ro­pean XFEL. While SUN­DAE1 will be a ver­ti­cal test stand to mea­sure SCU coils up to two me­ters with Hall probes in a liq­uid or su­per­fluid he­lium bath, SUN­DAE2 will mea­sure the SCU coils as­sem­bled in the final cryo­stat. This con­tri­bu­tion pre­sents the de­vel­op­ment sta­tus of SUN­DAE2 and its main re­quire­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT032  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT033 Performance Characterisation at Daresbury Laboratory of Cs-Te Photocathodes Grown at CERN 2653
 
  • L.A.J. Soomary, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C. Benjamin, H.M. Churn, L.B. Jonespresenter, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin
    University of Warwick, Coventry, United Kingdom
  • E. Chevallay, V.N. Fedosseev, E. Granados, M. Himmerlich, H. Panuganti
    CERN, Meyrin, Switzerland
  • L.B. Jonespresenter, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: STFC Doctoral Training Studentship
The search for high-per­for­mance pho­to­cath­odes is a pri­or­ity in the field of par­ti­cle ac­cel­er­a­tors. The sur­face char­ac­ter­is­tics of a pho­to­cath­ode af­fect many im­por­tant fac­tors of the pho­toe­mis­sion process in­clud­ing the pho­toe­mis­sion thresh­old, the in­trin­sic emit­tance and the quan­tum ef­fi­ciency. These fac­tors in turn de­fine the elec­tron beam qual­ity, which is mea­sur­able using fig­ures of merit like beam emit­tance, bright­ness and en­ergy spread. We pre­sent char­ac­ter­i­sa­tion mea­sure­ments for four cae­sium tel­luride pho­to­cath­odes syn­the­sized at CERN. The pho­to­cath­odes were trans­ported under ul­tra-high vac­uum (UHV) and analysed at STFC Dares­bury Lab­o­ra­tory, using ASTeC’s Mul­ti­probe (SAPI)* for sur­face char­ac­ter­i­sa­tion via XPS and STM, and for Mean Trans­verse En­ergy (MTE) mea­sure­ments using the Trans­verse En­ergy Spread Spec­trom­e­ter (TESS)**. The MTE mea­sure­ments were es­ti­mated at cryo­genic and room tem­per­a­tures based on the re­spec­tive trans­verse en­ergy dis­tri­b­u­tion curves. We dis­cuss cor­re­la­tions found be­tween the syn­the­sis pa­ra­me­ters, and the mea­sured sur­face char­ac­ter­is­tics and MTE val­ues.
*B.L. Militsyn, 4-th EuCARD2 WP12.5 meeting, Warsaw, 14-15 March 2017
**L.B. Jones et al., Proc. FEL ’13, TUPPS033, 290-293; https://accelconf.web.cern.ch/FEL2013/papers/tupso33.pdf
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT033  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT034 Controlled Degradation of a Ag Photocathode by Exposure to Multiple Gases 2657
 
  • L.A.J. Soomary, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • L.B. Jonespresenter, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • L.B. Jonespresenter, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: STFC Doctoral Training Studentship
The search for high per­for­mance pho­to­cath­ode elec­tron sources is a pri­or­ity in the ac­cel­er­a­tor sci­ence com­mu­nity. The sur­face char­ac­ter­is­tics of a pho­to­cath­ode de­fine many im­por­tant fac­tors of the pho­toe­mis­sion process in­clud­ing the work func­tion, the in­trin­sic emit­tance and the quan­tum ef­fi­ciency of the pho­to­cath­ode. These fac­tors in turn de­fine the ul­ti­mate elec­tron beam qual­ity, which is mea­sur­able as nor­malised emit­tance, bright­ness and en­ergy spread. Strate­gies for im­prov­ing these pa­ra­me­ters vary, but un­der­stand­ing and in­flu­enc­ing the rel­e­vant cath­ode sur­face physics which un­der­pin these at­trib­utes is a pri­mary focus for the com­mu­nity*. We pre­sent per­for­mance data under il­lu­mi­na­tion at 266 nm for Ag (100) sin­gle-crys­tal cath­ode and a Ag poly­crys­talline cath­ode after pro­gres­sive ex­po­sure to O2, CO2, CO and N2 using our TESS** in­stru­ment both at room and cryo­genic tem­per­a­tures. Cru­cially the data shows the ef­fect of pro­gres­sive degra­da­tion*** in the pho­to­cath­ode per­for­mance as a con­se­quence of ex­po­sure to con­trolled lev­els of O2 and that ex­pos­ing an ox­i­dized Ag sur­face to CO can drive par­tial QE re­cov­ery.
*K.L. Jensen; Appl. Phys. Lett. 89, 224103 (2006);
**L.B. Jones et al.; Proc. FEL ’13, TUPPS033, 290-293;
***N. Chanlek et al.; J. Phys. D: Appl. Phys. (2014) 47, 055110;
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT034  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT035 A Second Generation Light Source Aiming at High Power on the Giant Dipole Resonance 2661
 
  • X. Buffat, L.L. Cuanillon, E.N. Kneubuehler
    CERN, Meyrin, Switzerland
 
  We pro­pose an ac­cel­er­a­tor con­cept which could en­able nu­clear waste trans­mu­ta­tion and en­ergy am­pli­fi­ca­tion using a sec­ond gen­er­a­tion light source rather than a high power pro­ton beam. The main pa­ra­me­ters of the ring and in­ser­tion de­vices are es­ti­mated, tar­get­ing a pho­ton beam power of 1 GW with a spec­trum that max­i­mizes the po­ten­tial for nu­clear re­ac­tions via the Giant Di­pole Res­o­nance. The syn­er­gies with tech­nolo­gies de­vel­oped for high en­ergy physics, in par­tic­u­lar within the Fu­ture Cir­cu­lar Col­lider study (FCC), are high­lighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT035  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT036 New Microwave Thermionic Electron Gun for APS Upgrade: Test Results and Operation Experience 2665
 
  • S.V. Kutsaev, R.B. Agustsson, A.C. Araujo Martinez, R.D. Berry, O. Chimalpopoca, A.Y. Murokh, M. Ruelas, A.Yu. Smirnov, S.U. Thielk
    RadiaBeam, Santa Monica, California, USA
  • J.E. Hoyt, W.G. Jansma, A. Nassiri, Y. Sun, G.J. Waldschmidt
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, under contracts DE-SC0015191 and DE- AC02-06CH11357
Re­cently, Ra­di­a­Beam has de­signed and built a ro­bust thermionic RF gun with op­ti­mized elec­tro­mag­netic per-for­mance, im­proved ther­mal en­gi­neer­ing, and a ro­bust cath­ode mount­ing tech­nique. This gun al­lows to im­prove the per­for­mance of ex­ist­ing and fu­ture light sources, in­dus­trial ac­cel­er­a­tors, and elec­tron beam dri­ven te-ra­hertz sources. Un­like con­ven­tional elec­tri­cally or side-cou­pled RF guns, this new gun op­er­ates in ’-mode with the help of mag­netic cou­pling holes. Such a de­sign al-lows op­er­a­tion at longer pulses and has neg­li­gi­ble di­pole and quadru­pole com­po­nents. The gun pro­to­type was built, then in­stalled and tested at the Ad­vanced Pho­ton Source (APS) in­jec­tor. This paper pre­sents the re­sults of high power and beam tests of this RF gun, and op­er­a­tion-al ex­pe­ri­ence at APS to this mo­ment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT036  
About • Received ※ 31 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT037 Ceramics Evaluation for MW-Power Coaxial Windows, Operating in UHF Frequency Range 2668
 
  • S.V. Kutsaev, R.B. Agustsson, P.R. Carriere, N.G. Matavalam, A.Yu. Smirnov, S.U. Thielk
    RadiaBeam, Santa Monica, California, USA
  • A.A. Haase
    SLAC, Menlo Park, California, USA
  • T.W. Hall, D. Kim, J.T.M. Lyles, K.E. Nichols
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, under SBIR grant DE- SC0021552
Mod­ern ac­cel­er­a­tor fa­cil­i­ties re­quire re­li­able high-power RF com­po­nents. The RF vac­uum win­dow is a crit­i­cal part of the wave­guide cou­plers to the ac­cel­er­at­ing cav­i­ties. It is the point where the RF feed crosses the vac­uum bound­ary and thus forms part of the con­fine­ment bar­rier. RF win­dows must be de­signed to have low power dis­si­pa­tion in­side their ce­ramic, be re­sis­tant to me­chan­i­cal stresses, and free of dis­charges. In this paper, we re­port on the eval­u­a­tion of three dif­fer­ent ce­ramic can­di­dates for high power RF win­dows. These ma­te­ri­als have low loss tan­gents, low sec­ondary elec­tron yield (SEY), and large ther­mal ex­pan­sion co­ef­fi­cients. The ac­quired ma­te­ri­als were in­spected, coated, and mea­sured to se­lect the op­ti­mal set.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT037  
About • Received ※ 01 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT038 Sirius Injection Optimization 2672
 
  • X.R. Resende, M.B. Alves, L. Liu, A.C.S. Oliveira, J.V. Quentino, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Sir­ius is the new 3 GeV stor­age ring (SR)-based 4th gen­er­a­tion syn­chro­tron light source built and op­er­ated by the Brazil­ian Syn­chro­tron Light Lab­o­ra­tory (LNLS) lo­cated in the CNPEM cam­pus, in Camp­inas. The fore­see­able move to a top-up in­jec­tion scheme de­mands im­prove­ment of in­jec­tion ef­fi­ciency and re­peata­bil­ity lev­els. In this work we re­port on the lat­est ef­forts in op­ti­miz­ing the Sir­ius in­jec­tion sys­tem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT038  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT039 Performance Report of the SOLEIL Multipole Injection Kicker 2675
SUSPMF022   use link to see paper's listing under its alternate paper code  
 
  • R. Ollier, P. Alexandre, R. Ben El Fekih, A. Gamelin, N. Hubert, M. Labat, A. Nadji, L.S. Nadolski, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  A Mul­ti­pole In­jec­tion Kicker (MIK) was in­stalled in a short straight sec­tion of the SOLEIL stor­age ring and suc­cess­fully com­mis­sioned in 2021. A small hor­i­zon­tal orbit dis­tor­tion in the mi­crom­e­ter range was achieved out­per­form­ing the stan­dard bump-based in­jec­tion scheme in­stalled in a 12-m long straight sec­tion. Re­fined stud­ies have been con­ducted to fully un­der­stand and fur­ther im­prove the per­for­mance of the de­vice. In­deed, a novel gen­er­a­tion of the MIK will be the key el­e­ment for the in­jec­tion scheme of the SOLEIL Up­grade. We re­port sim­u­la­tion stud­ies and the lat­est MIK ex­per­i­men­tal per­for­mance. Both in­jected and stored beam-based mea­sure­ments were per­formed using new types of di­ag­nos­tics with turn-by-turn ca­pa­bil­ity (Lib­era Bril­lance+ BPM, KA­LYPSO: 2x1D imag­ing). The resid­ual per­tur­ba­tions on the beam po­si­tions and sizes were mea­sured; the mag­netic field of the MIK de­vice was re­con­structed. An un­ex­pected kick was de­tected in the ver­ti­cal plane and an ac­tive cor­rec­tion im­ple­mented to can­cel the re­sult­ing per­tur­ba­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT039  
About • Received ※ 09 June 2022 — Accepted ※ 29 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT040 Injection Using a Non-Linear Kicker at the ESRF 2679
 
  • S.M. White, T.P. Perronpresenter
    ESRF, Grenoble, France
 
  The ESRF in­jec­tion con­sists in a stan­dard four kick­ers bump off-axis in­jec­tion. Al­though this scheme is very ro­bust and re­li­able it is known to dis­turb users dur­ing in­jec­tions and may rep­re­sent a se­vere lim­i­ta­tion in case fre­quent in­jec­tions are re­quired. The non-lin­ear kicker in­jec­tion scheme pro­vides a pos­si­ble so­lu­tion to this prob­lem by act­ing only on the in­jected beam. This paper re­ports on the po­ten­tial in­te­gra­tion of a non-lin­ear kicker in­jec­tion scheme at the ESRF. A lay­out and spec­i­fi­ca­tions for the kicker are pro­posed and sim­u­la­tions are pro­vided to eval­u­ate the per­for­mance and lim­i­ta­tions of such scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT040  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT041 Commissioning of New Kicker Power Supplies to Improve Injection Perturbations at the ESRF 2683
 
  • S.M. White, N. Carmignani, L.R. Carver, M. Dubrulle, L. Hoummi, M. Morati, T.P. Perronpresenter, B. Roche
    ESRF, Grenoble, France
 
  The ESRF-EBS stor­age ring re­sumed op­er­a­tion in 2020. Due to the re­duced life­time, top-up in­jec­tion is re­quired for all op­er­a­tion modes. Per­tur­ba­tions on the stored beam in­tro­duced by the pulsed in­jec­tion el­e­ments rep­re­sent a sig­nif­i­cant dis­tur­bance to the beam lines that need to run ex­per­i­ments across in­jec­tion. In order to re­duce these per­tur­ba­tion, new kicker power sup­plies with slower ramp­ing times and bet­ter shot-to-shot re­pro­ducibil­ity were de­vel­oped at ESRF to im­prove the ef­fi­ciency of the feed-for­ward com­pen­sa­tion scheme. This paper re­ports on the de­sign, com­mis­sion­ing and first ex­per­i­men­tal val­i­da­tion of these new power sup­plies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT041  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT042 Studies for a Laser Wakefield Driven Injector at ELSA 2686
 
  • K. Kranz, K. Desch, D. Elsner, M.T. Switkapresenter
    ELSA, Bonn, Germany
 
  At the Uni­ver­sity of Bonn, Ger­many, the stor­age ring ELSA ex­tracts elec­trons with en­er­gies up to 3.2 GeV to hadron physics and novel de­tec­tor test­ing ex­per­i­ments. We study the fea­si­bil­ity of re­plac­ing the cur­rent 26 MeV LINAC in­jec­tor with a laser wake­field ac­cel­er­a­tor (LWA). For this, con­tem­po­rary pa­ra­me­ters from cur­rent LWA se­tups at other lab­o­ra­to­ries are as­sumed and matched to the ac­cep­tance of the booster syn­chro­tron. More­over, a con­cep­tional draft of a po­ten­tial LWA setup is cre­ated. This takes into con­sid­er­a­tion the in­flu­ence of build­ing con­di­tions such as avail­able floor space and build­ing vi­bra­tions to es­ti­mate a setup and laser beam sta­bil­ity of a plasma gen­er­at­ing high power laser sys­tem and beam­line to the plasma cell. The meth­ods and in­ter­me­di­ate re­sults of this study will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT042  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT043 Injection Design Options for the Low-Emittance PETRA IV Storage Ring 2689
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil, G. Loisch, F. Obier
    DESY, Hamburg, Germany
 
  The pro­posed PETRA IV elec­tron stor­age ring that will re­place DESY’s flag­ship syn­chro­tron light source PETRA III will fea­ture a hor­i­zon­tal emit­tance as low as 20 pm based on a hy­brid six-bend achro­mat lat­tice. Such a lat­tice de­sign leads to the dif­fi­culty of in­ject­ing the in­com­ing beam into an ac­cep­tance that is as small as 2.6 um. In con­trast to ear­lier lat­tice it­er­a­tions based on a seven-bend achro­mat lat­tice, the lat­est ver­sion al­lows ac­cu­mu­la­tion, i.e., the off-axis in­jec­tion of the in­com­ing beam. In this con­tri­bu­tion, the ef­fects of de­ploy­ing dif­fer­ent sep­tum types, namely a pulsed or a Lam­bert­son sep­tum, on the in­jec­tion process as well as the in­jec­tion ef­fi­ciency are pre­sented. This analy­sis in­cludes the ef­fects of com­mon ma­nip­u­la­tions to the in­jected beam, e.g., beam ro­ta­tion and aper­ture shar­ing, on the in­jec­tion ef­fi­ciency. Fur­ther­more, the op­tion of a non­lin­ear kicker and its op­ti­miza­tion (wire po­si­tions, wire cur­rent, op­tics func­tions) are pre­sented since a non­lin­ear kicker could pro­vide an al­ter­na­tive to the rather large num­ber of strip-line kick­ers that are nec­es­sary to gen­er­ate the orbit bump at the sep­tum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT043  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT044 The Alkali-Metal Photocathode Preparation Facility at Daresbury Laboratory: First Caesium Telluride Deposition Results 2693
 
  • H.M. Churn, C. Benjamin, L.B. Jones, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin
    University of Warwick, Coventry, United Kingdom
  • H.M. Churn, L.B. Jones, T.C.Q. Noakes
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Fourth gen­er­a­tion light sources re­quire high bright­ness elec­tron beams. To achieve this a pho­to­cath­ode with a high quan­tum ef­fi­ciency and low in­trin­sic emit­tance is re­quired, which is also ro­bust with a long op­er­a­tional life­time and low dark cur­rent. Al­kali-metal pho­to­cath­odes have the po­ten­tial to ful­fil these re­quire­ments, so are an im­por­tant re­search area for the ac­cel­er­a­tor physics com­mu­nity. STFC Dares­bury Lab­o­ra­tory are cur­rently com­mis­sion­ing the Al­kali-metal Pho­to­cath­ode Prepa­ra­tion Fa­cil­ity (APPF) which will be used to grow al­kali pho­to­cath­odes. Pho­to­cath­odes pro­duced by the APPF will be analysed using Dares­bury Lab­o­ra­tory’s ex­ist­ing Mul­ti­probe sys­tem* and the Trans­verse En­ergy Spread Spec­trom­e­ter (TESS)**. Mul­ti­probe can per­form a va­ri­ety of sur­face analy­sis tech­niques while the TESS can mea­sure the Mean Trans­verse En­ergy of a pho­to­cath­ode from its Trans­verse En­ergy Dis­tri­b­u­tion Curve over a large range of il­lu­mi­na­tion wave­lengths. We pre­sent an overview on our cur­rent progress in the com­mis­sion­ing and test­ing of the APPF, the re­sults from the first Cs-Te de­po­si­tion and de­tail the work planned to fa­cil­i­tate the man­u­fac­ture of Cs2Te pho­to­cath­odes for the CLARA ac­cel­er­a­tor***.
*B.L. Militsyn, 4th EuCARD2 WP12.5 meeting, Warsaw, 14-15 Mar. 2017
**L. Jones et al., Proc. FEL ’13, TUPPS033, 290-293
***D. Angal-Kalinin et al., Phys. Rev. Accel. Beams, Vol. 23, Iss. 4, 2020
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT044  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT045 OPAL Simulations of the MESA Injection System 2697
 
  • S. Friederich
    IKP, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher, C.P. Stollpresenter
    KPH, Mainz, Germany
 
  Funding: This work is supported by the DFG excellence initiative PRISMA+.
The MESA in­jec­tion sys­tem will pro­duce the spin-po­lar­ized elec­tron beam for the up­com­ing ac­cel­er­a­tor MESA in Ger­many. The pho­toe­mis­sion elec­tron source (STEAM) will de­liver 150 uA of spin-po­lar­ized elec­trons from GaAs-based pho­to­cath­odes for the P2 ex­per­i­ment. Af­ter­wards the low-en­ergy beam trans­porta­tion sys­tem (MELBA) can ro­tate the spin using two Wien fil­ters and a so­le­noid for po­lar­iza­tion mea­sure­ments and to com­pen­sate for the spin pre­ces­sion in MESA. A chop­per and buncher sys­tem pre­pares the phase space for the first ac­cel­er­a­tion in the nor­mal-con­duct­ing pre-booster MAMBO. First OPAL sim­u­la­tion re­sults of MELBA were pre­sented at IPAC’21. Mean­while these sim­u­la­tions have been ex­tended by a 270-de­gree-bend­ing alpha mag­net as well as the elec­tro­sta­tic and mag­ne­to­sta­tic fieldmaps of the Wien fil­ters. Fur­ther­more the fieldmaps of the 4 mod­ules of the pre-ac­cel­er­a­tor MAMBO have been im­ple­mented. Hence, the com­plete MESA in­jec­tion sys­tem could be sim­u­lated in OPAL and the re­sults will be shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT045  
About • Received ※ 30 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT047 A Double Dipole Kicker for Off and On-Axis Injection for ALBA-II 2701
 
  • G. Benedetti, M. Carlà, M. Pont
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  In­jec­tion into the ALBA-II stor­age ring will be per­formed off-axis in a 4 me­ters straight sec­tion with a sin­gle mul­ti­pole kicker. We pre­sent a novel topol­ogy for the coils of the in­jec­tion kicker, named dou­ble di­pole kicker (DDK). The re­sult­ing mag­netic field is the su­per­po­si­tion of two op­po­site dipoles, gen­er­ated by four inner and four outer con­duc­tor rods. When the eight rods are pow­ered, the di­pole term can­cels and the re­main­ing mul­ti­pole field is used for off-axis in­jec­tion. Al­ter­na­tively, when the four inner rods are switched off, an al­most pure di­pole is pro­duced, that is use­ful for on-axis in­jec­tion dur­ing the com­mis­sion­ing. A pro­to­type of DDK is presently under de­sign to be in­stalled and tested in the ex­ist­ing ALBA stor­age ring. The po­si­tion­ing of the rods is cal­cu­lated in order to max­imise the kick ef­fi­ciency in mrad/kA and min­imise the dis­tur­bance to the orbit and the emit­tance of the stored beam. A metal­lic coat­ing with op­ti­mised thick­ness along the inner ce­ramic vac­uum cham­ber should pro­vide com­pen­sa­tion for the eddy cur­rents in­duced field in order to min­i­mize the dis­tur­bance to the stored beam while en­sur­ing suf­fi­ciently low heat dis­si­pa­tion by the beam image cur­rents.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT047  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT048 Impact of IDs on the Diamond Storage Ring and Application to Diamond-II 2705
 
  • R.T. Fielder, B. Singhpresenter
    DLS, Oxfordshire, United Kingdom
 
  When in­ves­ti­gat­ing the ef­fect of in­ser­tion de­vices (IDs) on stor­age ring op­er­a­tions, it is not pos­si­ble to sim­u­late all of the large num­ber of gap, phase and field set­tings that are avail­able. This can be of par­tic­u­lar con­cern for tran­sient ef­fects in IDs that are moved fre­quently, or AP­PLE-II de­vices which may use many dif­fer­ent po­lar­i­sa­tion states. We there­fore pre­sent mea­sure­ments of the im­pact of se­lected IDs on var­i­ous pa­ra­me­ters in the cur­rent Di­a­mond stor­age ring in­clud­ing orbit dis­tor­tion, tunes, chro­matic­ity and emit­tance, and as­sess the ex­pected im­pact when ap­plied to the Di­a­mond-II lat­tice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT048  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT049 Beam Dynamics Studies for the Diamond-II Injector 2708
 
  • I.P.S. Martin, R.T. Fielder, J. Kallestrup, T. Olsson, B. Singhpresenter
    DLS, Oxfordshire, United Kingdom
  • J.K. Jones, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The re­place­ment, low-emit­tance booster for the Di­a­mond-II pro­ject will have a race­track struc­ture of 36 units cells con­structed from al­ter­nat­ing fo­cussing and de­fo­cussing com­bined-func­tion dipoles*. In this paper we re­port on how the de­sign and per­for­mance char­ac­ter­i­sa­tion of the booster has re­cently de­vel­oped; this in­cludes an in­crease in the in­jec­tion en­ergy from 100 to 150 MeV, a mod­i­fied cir­cum­fer­ence to match to the stor­age ring RF fre­quency, and a new nom­i­nal tune-point to im­prove the per­for­mance and en­able emit­tance ex­change. The in­flu­ence of the vac­uum cham­ber im­ped­ance and in­tra-beam scat­ter­ing on the elec­tron bunch pa­ra­me­ters dur­ing the ramp are pre­sented, along with the nec­es­sary changes to the trans­fer line lay­outs.
*I.P.S. Martin, et al. "Progress with the Booster Design for the Diamond-II Upgrade", in Proc. IPAC’21, paper ID MOPAB071, Campinas, Brazil, May 2021
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT049  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT050 Development and Construction of Cryogenic Permanent Magnet Undulators for ESRF-EBS 2712
 
  • C. Benabderrahmane, P. Brumund, J. Chavanne, D. Coulon, G. Le Bec, B. Ogier, R. Versteegen
    ESRF, Grenoble, France
 
  The ESRF Ex­tremely Bril­liant Source (ESRF-EBS) is on op­er­a­tion for Users since Au­gust 2020 after 20 months of shut­down. This first of a kind fourth gen­er­a­tion high en­ergy syn­chro­tron is based on a Hy­brid Multi-Bend Achro­mat lat­tice. The main goal of the ESRF-EBS is to re­duce the hor­i­zon­tal emit­tance, which leads to a sig­nifi-cant in­crease of the X-ray source bril­liance. To cover the in­ten­sive de­mand of short pe­riod small gap un­du­la­tors at ESRF-EBS, a new de­sign for a 2 m Cryo­genic Per­ma­nent Mag­net Un­du­la­tor (CPMU) has been de­vel­oped. Six CPMUs will be in­stalled in the next years; the first two CPMUs have been con­structed and ac­tu­ally used on ID15 and ID16 beam­line, the third one is under con-struct­ing. An in­ten­sive re­fur­bish­ment work has been done on the ex­ist­ing in­ser­tion de­vices to adapt them to the new ac­cel­er­a­tor which has shorter straight sec­tion and closer dipoles to the IDs than in the old one. This con­tri­bu­tion will re­view the de­vel­op­ment, con­struc-tion and com­mis­sion­ing of the new CPMUs, and the re­fur­bish­ment work done on the ex­ist­ing ones to adapt them to the new ac­cel­er­a­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT050  
About • Received ※ 02 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT052 The Status of the In-Vacuum-APPLE II Undulator IVUE32 at HZB / BESSY II 2716
 
  • J. Bahrdt, J. Bakos, S. Gaebel, S. Gottschlich, S. Grimmer, S. Knaack, C. Kuhn, F. Laube, A. Meseck, C. Rethfeldt, E.C.M. Rial, A. Rogosch-Opolka, M. Scheer, P.I. Volz
    HZB, Berlin, Germany
 
  At BESSY II, two new beam­lines for RIXS and for X-Ray-mi­croscopy de­mand a short pe­riod vari­ably po­lar­iz­ing un­du­la­tor. For this pur­pose, the first in-vac­uum APPLE un­du­la­tor world­wide is under con­struc­tion. The pa­ra­me­ters are as fol­lows: pe­riod length=32mm, mag­netic length=2500mm, min­i­mum gap=7mm. The de­sign in­cor­po­rates a force com­pen­sa­tion scheme as pro­posed by two of the au­thors at the SRI2018. All pre­ci­sion parts of the drive chain are lo­cated in air. New trans­verse slides for the trans­ver­sal slit ad­just­ment have been de­vel­oped and tested. Op­ti­cal mi­crom­e­ters mea­sure the gap and shift po­si­tions, sim­i­lar to the sys­tem of the CP­MU17 at BESSY II. They pro­vide the sig­nals for motor feed­back loops. A new UHV-com­pat­i­ble sol­der­ing tech­nique, as de­vel­oped with in­dus­try, re­laxes fab­ri­ca­tion tol­er­ances of mag­nets and mag­net hold­ers and sim­pli­fies the mag­net as­sem­bly. A 10-pe­riod pro­to­type has been setup for life­time tests of the new mag­netic keeper de­sign. The paper de­scribes first re­sults of the pro­to­type and other key-com­po­nents and sum­ma­rizes the sta­tus of the full-scale un­du­la­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT052  
About • Received ※ 19 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT053 Goubau-Line Set Up for Bench Testing Impedance of IVU32 Components 2719
SUSPMF023   use link to see paper's listing under its alternate paper code  
 
  • P.I. Volz, A. Meseck
    HZB, Berlin, Germany
  • A. Meseck
    KPH, Mainz, Germany
 
  The world­wide first in-vac­uum el­lip­ti­cal un­du­la­tor, IVUE32, is being de­vel­oped at Helmholtz-Zen­trum Berlin. The 2.5 m long de­vice with a pe­riod length of 3.2 cm and a min­i­mum gap of about 7 mm is to be in­stalled in the BESSY II stor­age ring. It will de­liver ra­di­a­tion in the soft X-ray range to sev­eral beam­lines. The prox­im­ity of the un­du­la­tor struc­ture to the elec­tron beam makes the de­vice sus­cep­ti­ble to wake­field ef­fects which can in­flu­ence beam sta­bil­ity. A com­plete un­der­stand­ing of its im­ped­ance char­ac­ter­is­tics is re­quired prior to in­stal­la­tion and op­er­a­tion, as un­fore­seen heat­ing of com­po­nents could have cat­a­strophic con­se­quences. To un­der­stand and mea­sure the IVU’s im­ped­ance char­ac­ter­is­tics a Goubau-Line test stand is being de­signed. A Goubau-line is a sin­gle wire trans­mis­sion line for high fre­quency sur­face waves with a trans­verse elec­tric field re­sem­bling that of a charged par­ti­cle beam out to a cer­tain ra­dial dis­tance. A con­cept op­ti­mized for bench test­ing IVUE32-com­po­nents will be dis­cussed, mi­crowave sim­u­la­tions will be pre­sented to­gether with first mea­sure­ments from a test stand pro­to­type.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT053  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT056 Emittance Exchange at Sirius Booster for Storage Ring Injection Improvement 2722
 
  • J.V. Quentino, M.B. Alvespresenter, F.H. de Sá
    LNLS, Campinas, Brazil
 
  SIR­IUS is the new 4th gen­er­a­tion stor­age ring based syn­chro­tron light source built and op­er­ated by the Brazil­ian Syn­chro­tron Light Lab­o­ra­tory (LNLS) at the Brazil­ian Cen­ter for Re­search in En­ergy and Ma­te­ri­als (CNPEM). Cur­rently, the ef­fi­ciency of the hor­i­zon­tal off-axis in­jec­tion sys­tem of the stor­age ring is still not suit­able for top-up op­er­a­tion due to a smaller than ex­pected hor­i­zon­tal dy­namic aper­ture. In this work, we re­port the sim­u­la­tions and ex­per­i­men­tal re­sults of trans­verse emit­tance ex­change (TEE) per­formed at SIR­IUS booster by cross­ing a cou­pling dif­fer­ence res­o­nance dur­ing en­ergy ramp, with the goal of de­creas­ing the in­jected hor­i­zon­tal beam size and im­prove the off-axis in­jec­tion ef­fi­ciency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT056  
About • Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT058 Status and Powering Test Results of HTS Undulator Coils at 77 K for Compact FEL Designs 2726
SUSPMF024   use link to see paper's listing under its alternate paper code  
 
  • S.C. Richter, A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
  • A. Ballarino, T.H. Nes, S.C. Richter, D. Schoerling
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the Wolfgang Gentner Program of the German Federal Ministry of Education and Research (grant no. 05E18CHA).
The pro­duc­tion of low emit­tance positron beams for fu­ture lin­ear and cir­cu­lar lep­ton col­lid­ers, like CLIC or FCC-ee, re­quires high-field damp­ing wig­glers. Just as com­pact free-elec­tron lasers (FELs) re­quire high-field but as well short-pe­riod un­du­la­tors to emit high en­er­getic, co­her­ent pho­tons. Using high-tem­per­a­ture su­per­con­duc­tors (HTS) in the form of coated ReBCO tape su­per­con­duc­tors al­lows higher mag­netic field am­pli­tudes at 4 K and larger op­er­at­ing mar­gins as com­pared to low-tem­per­a­ture su­per­con­duc­tors, like Nb-Ti. This con­tri­bu­tion dis­cusses the de­vel­op­ment work on su­per­con­duct­ing ver­ti­cal race­track (VR) un­du­la­tor coils, wound from coated ReBCO tape su­per­con­duc­tors. The pre­sented VR coils were mod­u­larly de­signed with a pe­riod length of 13 mm. Pow­er­ing tests in liq­uid ni­tro­gen of mul­ti­ple ver­ti­cal race­track coils were per­formed at CERN. The re­sults from the mea­sure­ments are pre­sented for three VR coils and com­pared with elec­tro­mag­netic sim­u­la­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT058  
About • Received ※ 17 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT059 Development of a Transfer Line for LPA-Generated Electron Bunches to a Compact Storage Ring 2730
 
  • B. Härer, E. Bründermann, D. El Khechen, A.-S. Müller, A.I. Papash, S.C. Richterpresenter, R. Ruprecht, J. Schäfer, M. Schuh, C. Widmann
    KIT, Karlsruhe, Germany
  • L. Jeppe
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • A.R. Maier, J. Osterhoff, E. Panofski
    DESY, Hamburg, Germany
  • P. Messner
    University of Hamburg, Hamburg, Germany
 
  The in­jec­tion of LPA-gen­er­ated beams into a stor­age ring is con­sid­ered to be one of the most promi­nent ap­pli­ca­tions of laser plasma ac­cel­er­a­tors (LPAs). In a com­bined en­deav­our be­tween Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT) and Deutsches Elek­tro­nen-Syn­chro­tron (DESY) the key chal­lenges will be ad­dressed with the aim to suc­cess­fully demon­strate in­jec­tion of LPA-gen­er­ated beams into a com­pact stor­age ring with large en­ergy ac­cep­tance and dy­namic aper­ture. Such a stor­age ring and the cor­re­spond­ing trans­fer line are cur­rently being de­signed within the cSTART pro­ject at KIT and will be ide­ally suited to ac­cept bunches from a 50 MeV LPA pro­to­type de­vel­oped at DESY. This con­tri­bu­tion pre­sents the fore­seen lay­out of the trans­fer line from the LPA to the in­jec­tion point of the stor­age ring and dis­cusses the sta­tus of beams op­tics cal­cu­la­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT059  
About • Received ※ 05 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT060 Tolerance Study on the Geometrical Errors for a Planar Superconducting Undulator 2734
 
  • V. Grattoni, S. Casalbuonipresenter, B. Marchetti
    EuXFEL, Schenefeld, Germany
 
  At the Eu­ro­pean XFEL, a su­per­con­duct­ing af­ter­burner is con­sid­ered for the SASE2 hard X-ray beam­line. It will con­sist of six un­du­la­tor mod­ules. Within each mod­ule, two su­per­con­duct­ing un­du­la­tors (SCU) 2 m long are pre­sent. Such an af­ter­burner will en­able pho­ton en­er­gies above 30 keV. A high field qual­ity of the SCU is cru­cial to guar­an­tee the qual­ity of the elec­tron beam tra­jec­tory, which is di­rectly re­lated to the spec­tral qual­ity of the emit­ted free-elec­tron laser (FEL) ra­di­a­tion. There­fore, the ef­fects of the SCU’s me­chan­i­cal im­per­fec­tions on the re­sul­tant mag­netic field have to be care­fully char­ac­ter­ized. In this con­tri­bu­tion, we pre­sent pos­si­ble me­chan­i­cal er­rors af­fect­ing the un­du­la­tor struc­ture, and we per­form an an­a­lyt­i­cal study aimed at de­ter­min­ing the tol­er­ances on these er­rors for our SCUs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT060  
About • Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT061 European XFEL Undulators - Status and Plans 2737
 
  • S. Casalbuoni, S. Abeghyan, J.E. Baader, U. Englisch, V. Grattoni, S. Karabekyan, B. Marchetti, H. Sinn, F. Wolff-Fabris, M. Yakopov, P. Ziolkowski
    EuXFEL, Schenefeld, Germany
 
  Eu­ro­pean XFEL has three un­du­la­tor lines based on per­ma­nent mag­net tech­nol­ogy: two for hard and one for soft X-rays. The pla­nar un­du­la­tors can be tuned to cover the ac­cep­tance in terms of pho­ton beam en­ergy of the re­spec­tive pho­ton beam­lines: 3.6-25 keV (SASE1/2) and 0.25-3 keV (SASE3) by chang­ing the elec­tron en­ergy range be­tween 11.5 GeV and 17.5 GeV and/or the un­du­la­tor gap. In order to ob­tain dif­fer­ent po­lar­iza­tion modes, as re­quired by the soft X-ray beam­lines, a he­li­cal af­ter­burner con­sist­ing of four APPLE X un­du­la­tors de­signed by PSI has been in­stalled at the down­stream end of the pre­sent SASE3 un­du­la­tor sys­tem. The Eu­ro­pean XFEL plans to de­velop the tech­nol­ogy of su­per­con­duct­ing un­du­la­tors, which is of strate­gic im­por­tance for the fa­cil­ity up­grade. In order to ex­tend the en­ergy range above 30 keV a su­per­con­duct­ing un­du­la­tor af­ter­burner is fore­seen to be in­stalled at the end of SASE2. This con­tri­bu­tion pre­sents the cur­rent sta­tus and the planned up­grades of the un­du­la­tor lines at Eu­ro­pean XFEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT061  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT063 Design of Scilab Xcos Simulation Model for Pulsed Wire Method Data Analyses 2741
 
  • H. Jeevakhan
    NITTTR, Bhopal, India
  • S.M. Khan, G. Mishra
    Devi Ahilya University, Indore, India
 
  Pulsed wire method (PWM)is used for un­du­la­tor char­ac­ter­i­sa­tion. Scilab Xcos sim­u­la­tion model is de­signed for the analy­ses of data ob­tained by PWM. The data ob­tained from PWM is given as input to the model and its out­put gives the mag­netic field of the un­du­la­tor. Scilab Xcos model can also be uti­lized for de­ter­min­ing the phase error of the un­du­la­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT063  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT064 Hall Probe Magnetic Measurement of 50 mm Period PPM Undulator 2744
SUSPMF025   use link to see paper's listing under its alternate paper code  
 
  • S.M. Khan, G. Mishra
    Devi Ahilya University, Indore, India
  • M. Gehlot
    MAX IV Laboratory, Lund University, Lund, Sweden
  • H. Jeevakhan
    NITTTR, Bhopal, India
 
  In this paper, we pre­sent the lat­est upgra­da­tion of Hall Probe mag­netic mea­sure­ment sys­tem. The Hall Probe mea­sure­ment sys­tem is up­graded with po­si­tion mea­sur­ing de­tec­tors and 3D F.W. Bell Tes­lame­ter. The field in­te­grals and the phase er­rors are cal­cu­lated with a new user friendly MAT­LAB code. The in­te­grated mul­ti­poles both nor­mal and skew com­po­nents are mea­sured and dis­cussed in the paper. The pro­posed ac­tiv­i­ties on 300 mm length pro­to­type asym­met­ric un­du­la­tor and 50 mm quasi pe­riod, six pe­riod length at Laser In­stru­men­ta­tion and In­ser­tion De­vice Ap­pli­ca­tion lab­o­ra­tory of Devi Ahilya Vishwa Vidyalaya (DAVV), In­dore, India has been dis­cussed and de­sign com­po­nents are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT064  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT065 Operation of X-Ray Beam Position Monitors with Zero Bias Voltage at Alba Front Ends 2747
 
  • J. Marcos, U. Irisopresenter, V. Massana, R. Monge, D. Yépez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Blade-type X-ray Beam Po­si­tion Mon­i­tors (XBPMs) are cus­tom­ar­ily op­er­ated with a neg­a­tive bias volt­age ap­plied to the blades in order to pre­vent the trans­fer­ence of pho­to­elec­trons be­tween the blades, and hence to max­i­mize the sig­nal at each blade and to avoid cross-talk. This was the se­lected ap­proach at ALBA since the start of its op­er­a­tion for users in 2012. How­ever, over the years the in­su­la­tion pro­vided by the ce­ramic pieces sep­a­rat­ing the blades from the sup­port struc­ture has de­graded pro­gres­sively, giv­ing rise to an ever-in­creas­ing leak­age cur­rent not re­lated with the pho­ton beam to be mon­i­tored. On 2020 the level of these leak cur­rents had al­ready be­come com­pa­ra­ble to the pho­tocur­rents gen­er­ated by the pho­ton beam it­self, mak­ing the read­ings from many of the XBPMs un­re­li­able. Fol­low­ing the ex­am­ple from other fa­cil­i­ties, we de­cided to re­move the bias volt­age from the blades and to test the per­for­mance of the XBPMs under these con­di­tions, with such good re­sults that we apply this method also for the new, non de­graded, XBPMs. In this paper we pre­sent the ap­proach used at ALBA to analyse XBPM data, and our ex­pe­ri­ence op­er­at­ing them with zero bias volt­age.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT065  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT066 Helical Wiggler Design for Optical Stochastic Cooling at CESR 2751
 
  • V. Khachatryan, M.B. Andorf, I.V. Bazarov, J.A. Crittenden, S.J. Levenson, J.M. Maxson, D.L. Rubin, J.P. Shanks, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • W.F. Bergan
    BNL, Upton, New York, USA
 
  Funding: The authors thank the Center for Bright Beams, NSF award PHY-1549132; W.F.B. was supported by the NSF Graduate Research Fellowship Program under grant number DGE-1650441.
A he­li­cal wig­gler with pa­ra­me­ter kund=4.35 has been de­signed for the Op­ti­cal Sto­chas­tic Cool­ing (OSC) ex­per­i­ment in the Cor­nell Elec­tron Stor­age Ring (CESR). We con­sider four Hal­bach ar­rays, which di­men­sions are op­ti­mized to get the re­quired he­li­cal field pro­file, as well as, to get the best Dy­namic Aper­ture (DA) in sim­u­la­tions. The end poles are de­signed with dif­fer­ent di­men­sions to min­i­mize the first and sec­ond field in­te­grals to avoid the need of ad­di­tional cor­rec­tors for the beam orbit. The de­sign is adopted to min­i­mize the risks for the mag­net blocks de­mag­ne­ti­za­tion. To quan­tify the tol­er­ances, we sim­u­lated the ef­fects of dif­fer­ent types of geo­met­ri­cal and mag­netic field er­rors on the OSC damp­ing rates. In ad­di­tion, to un­der­stand the chal­lenges for the con­struc­tion, as well as, to val­i­date the model field cal­cu­la­tions, we pro­to­typed a small two pe­riod ver­sion. The pro­to­type field is com­pared to the model, and the re­sults are pre­sented in this work.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT066  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT067 Propagation of Gaussian Wigner Function Through a Matrix-Aperture Beamline 2755
 
  • B. Nash, D.T. Abell, P. Moeller, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • N.B. Goldring
    STATE33 Inc., Portland, Oregon, USA
 
  Funding: This work is supported by the US Department of Energy, Office of Basic Energy Sciences under Award No. DE-SC0020593.
We de­velop a sim­pli­fied beam prop­a­ga­tion model for x-ray beam­lines that in­cludes par­tial co­her­ence as well as the im­pact of aper­tures on the beam. In par­tic­u­lar, we con­sider a gen­eral asym­met­ric Gauss­ian Schell model, which also cor­re­sponds to a Gauss­ian Wigner func­tion. The ra­di­a­tion is thus rep­re­sented by a 4x4 sym­met­ric sec­ond mo­ment ma­trix. We ap­prox­i­mate rec­tan­gu­lar aper­tures by Gauss­ian aper­tures, tak­ing care that the loss in flux is the same for the two mod­els. The beam will thus stay Gauss­ian through both lin­ear trans­port and pas­sage through the aper­tures, al­low­ing a self-con­sis­tent pic­ture. We de­rive ex­pres­sions for de­crease in flux and changes in sec­ond mo­ments upon pas­sage through the aper­ture. We also de­rive ex­pres­sions for the co­her­ence lengths and an­a­lyze how these prop­a­gate through lin­ear trans­port and Gauss­ian aper­tures. We apply our for­mal­ism to cases of low emit­tance light source beam­lines and de­velop a bet­ter un­der­stand­ing about trade-offs be­tween co­her­ence length in­crease and flux re­duc­tion while pass­ing through phys­i­cal aper­tures. Our for­mu­lae are im­ple­mented in Ra­di­a­Soft’s Sirepo Shadow ap­pli­ca­tion al­low­ing easy use for re­al­is­tic beam­line mod­els.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT067  
About • Received ※ 09 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT068 Linear Canonical Transform Library for Fast Coherent X-Ray Wavefront Propagation 2759
 
  • B. Nash, D.T. Abell, P. Moeller, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • N.B. Goldring
    STATE33 Inc., Portland, Oregon, USA
 
  Funding: This work is supported by the US Department of Energy, Office of Basic Energy Sciences under Award No. DE-SC0020593.
X-ray beam­lines are es­sen­tial com­po­nents of all syn­chro­tron light sources, trans­port­ing ra­di­a­tion from the stored elec­tron beam pass­ing from the source to the sam­ple. The lin­ear op­tics of the beam­line can be cap­tured via an ABCD ma­trix com­puted using a ray trac­ing code. Once the trans­port ma­trix is avail­able, one may then in­clude dif­frac­tion ef­fects and ar­bi­trary wave­front struc­ture by using that same in­for­ma­tion in a Lin­ear Canon­i­cal Trans­form (LCT) ap­plied to the ini­tial wave­front. We de­scribe our im­ple­men­ta­tion of a Python-based LCT li­brary for 2D syn­chro­tron ra­di­a­tion wave­fronts. We have thus far im­ple­mented the sep­a­ra­ble case and are in the process of im­ple­ment­ing al­go­rithms for the non-sep­a­ra­ble case. Rec­tan­gu­lar aper­tures are also in­cluded. We have tested our work against cor­re­spond­ing wave­front com­pu­ta­tions using The Syn­chro­tron Ra­di­a­tion Work­shop (SRW) code. LCT vs. SRW tim­ing and bench­mark com­par­isons are given for un­du­la­tor and bend­ing mag­net beam­lines. This al­go­rithm is being in­cluded in the Sirepo im­ple­men­ta­tion of the Shadow ray trac­ing code. Fi­nally, we de­scribe our plans for ap­pli­ca­tion to par­tially co­her­ent ra­di­a­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT068  
About • Received ※ 15 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)