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Abstract
X-ray beamlines are essential components of all syn-

chrotron light sources, transporting radiation from the stored
electron beam passing from the source to the sample. The
linear optics of the beamline can be captured via an ABCD
matrix computed using a ray tracing code. Once the trans-
port matrix is available, one may then include diffraction
effects and arbitrary wavefront structure by using that same
information in a Linear Canonical Transform (LCT) applied
to the initial wavefront. We describe our implementation of
a Python-based LCT library for 2D synchrotron radiation
wavefronts. We have thus far implemented the separable case
and are in the process of implementing algorithms for the
non-separable case. Rectangular apertures are also included.
We have tested our work against corresponding wavefront
computations using the Synchrotron Radiation Workshop
(SRW) code. LCT vs. SRW timing and benchmark compar-
isons are given for undulator and bending magnet beamlines.
This algorithm is being included in the Sirepo implemen-
tation of the Shadow ray tracing code. Finally, we describe
our plans for application to partially coherent radiation.

INTRODUCTION
Linear Canonical Transforms (LCTs) [1, 2] are a class of

integral transforms with applications in optics, quantum me-
chanics and signal processing. In the optical context, given
an 𝐴𝐵𝐶𝐷 matrix representing a linear transformation in ray
optics, the corresponding LCT transforms a coherent wave-
front through that same optical system.

X-ray beamlines in synchrotron light sources transport the
radiation from source to sample. Modeling with full wave
optics and ray tracing is common during the design phase of
a beamline, but less common during everyday operation. In
order to develop a fast, simplified beamline model that one
may use in combination with diagnostic measurements, we
present the theory and implementation of the linear canoni-
cal transform. Although, true synchrotron radiation is only
partially coherent, a coherent mode decomposition [3] may
be performed and each mode propagated independently. We
also work within a simplified framework we refer to as a
matrix-aperture beamline [4]. Finally, we note that although
many references describe fast LCT implementations, there
exist, to our knowledge, no publicly available software li-
braries. Thus, our interest in developing such a library and
herein documenting this work.
∗ This work is supported by the US Department of Energy, Office of Basic

Energy Sciences under Award Number DE-SC0020593 and the Office of
High Energy Physics under award number DE-SC0020931.

We start by presenting the theory and implementation of
the 1D LCT, followed by the 2D separable case, constructed
out of the 1D case. The non-separable 2D case remains for
further development.

LINEAR CANONICAL TRANSFORMS IN
ONE DEGREE OF FREEDOM

The Linear Canonical Transform, or LCT, of a function
𝑓 (𝑢) is defined by the rule [1]

L𝑀[𝑓 ](𝑣) = e−i𝜋/4√𝛽 ∫
∞

−∞
𝑓 (𝑢) e−i𝜋(𝛼𝑣2−2𝛽𝑢𝑣+𝛾𝑢2) d𝑢.

(1)
The properties of a particular LCT are determined by the
associated 2 × 2 symplectic matrix

𝑀 = (𝐴 𝐵
𝐶 𝐷) = ( 𝛾/𝛽 1/𝛽

𝛼𝛾/𝛽 − 𝛽 𝛼/𝛽) , (2)

which describes the ray optics of an arbitrary beamline.
One may represent many of the well-known integral trans-

forms as special cases of the general LCT. These include
the Fourier transform, the fractional Fourier transform, the
Fresnel transform, chirp multiplication, and scaling (or mag-
nification). Moreover, LCTs obey the very important group
property

L𝑀2
∘ L𝑀1

= L𝑀2⋅𝑀1
. (3)

As a consequence, one may compute a given LCT as a com-
position of simpler LCTs: First decompose the matrix 𝑀
defining a given LCT into a product of simpler symplectic
matrices, each of which defines one of a few specific special
cases: scaling, Fourier transform, or chirp multiplication.
Then compose those transformations.

The scaling operation corresponds to the matrix

𝑀𝑚 = (𝑚 0
0 1/𝑚) , (4)

with the corresponding LCT given by

M𝑚[𝑓 ](𝑢) = 1
√𝑚

𝑓( 𝑢
𝑚). (5a)

For numerical work, we use the equivalent form

M𝑚[𝑓 ](𝑚 ⋅ 𝑢) = 1
√𝑚

𝑓 (𝑢). (5b)

If 𝑚 < 0, then one must introduce a factor of i.
The Fourier transform corresponds to the matrix

𝐹LC = ( 0 1
−1 0) , (6)
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Figure 1: Test of the LC Fourier transform acting on the
function 𝐹1(𝑧) = exp[−𝜋(1 + i)𝑧2] (left-hand column), and
the same function shifted one-half unit to the left.

with the corresponding LCT given by

FLC[𝑓 ](𝑣) = e−i𝜋/4 ∫
∞

−∞
e−i2𝜋𝑢𝑣𝑓 (𝑢) d𝑢. (7)

This differs from the standard Fourier transform by the lead-
ing phase factor e−i𝜋/4. For numerical work, we approximate
the integral so as to use the Fast Fourier Transform:

∫
∞

−∞
e−i2𝜋𝑢𝑣𝑓 (𝑢) d𝑢 ≈ ∫

𝑃/2

−𝑃/2
e−i2𝜋𝑢𝑣𝑓 (𝑢) d𝑢

≈ 𝑃
𝑁 ∑

𝑁

𝑗
e−i2𝜋𝑗𝑘/𝑁𝑓(𝑗 𝑃

𝑁).
(8)

Of course for this to work well, the signal 𝑓 must vanish—or
very nearly so—outside the domain [−𝑃/2, 𝑃/2].

Finally, the operation of chirp multiplication corresponds
to the matrix

𝑄𝑞 = ( 1 0
−𝑞 1) , (9)

with the corresponding LCT given by

Q𝑞[𝑓 ](𝑢) = e−i𝜋𝑞𝑢2𝑓 (𝑢) (10)

In addition to the above trio of basic operations, one also
requires the operation of resampling. This need derives from
the fact that applying chirp multiplication to a signal in-
creases the resolution required for accurate representation
of the resulting signal. See, for example [2, 5, 6].

We have implemented in Python1 the full set of functions
required for the computation of 1D LCTs. The appendix
contains a very brief overview. And in Figs. 1 and 2 we show
some tests of those functions.
1 https://github.com/radiasoft/rslight

Figure 2: Tests of two different 1D LCTs acting on the
shifted version of the function used in Fig. 1: L1, defined
by (𝛼, 𝛽, 𝛾) = (−3, −2, −1) (left-hand column); and L2,
defined by (𝛼, 𝛽, 𝛾) = (−4/5, 1, 2) (right-hand column).
The upper row displays results computed using our Python
library implementation lctLIB. For comparison, the lower
row displays results computed using brute-force numerical
integration.

LINEAR CANONICAL TRANSFORMS IN
TWO DEGREES OF FREEDOM

The Linear Canonical Transform, or LCT, in two degrees
of freedom is governed by a 4 × 4 real symplectic matrix

𝑀 = (𝐴 𝐵
𝐶 𝐷) .

in this context, the symplecticity of 𝑀 means that the 2 × 2
submatrices 𝐴, 𝐵, 𝐶, and 𝐷 must obey the relations [2]

𝐴 tr𝐶 = 𝐶 tr𝐴, 𝐵 tr𝐷 = 𝐷 tr𝐵, 𝐴 tr𝐷 − 𝐶 tr𝐵 = 𝐼 (11a)
𝐴𝐵 tr = 𝐵𝐴 tr, 𝐶𝐷 tr = 𝐷𝐶 tr, 𝐴𝐷 tr − 𝐵𝐶 tr = 𝐼, (11b)

where the superscript ‘tr’ denotes matrix transposition, and 𝐼
denotes the 2×2 identity matrix. The fact that the submatrices
obey these particular relations tells us that the matrix 𝑀 acts
on phase-space variables in the order (𝑞1, 𝑞2, 𝑝1, 𝑝2) (see,
for example, [7, §3.2]). This means that if one extracts the
ray optical matrix 𝑀 with the phase-space variables given in
some other order, e.g. (𝑞1, 𝑝1, 𝑞2, 𝑝2), then one must—for
the purposes of the computation described here—make sure
to appropriately permute the entries of 𝑀.

For a function 𝑓 ( ⃗𝑢), the LCT governed by matrix 𝑀 is
defined by the rule [1, 2]

L𝑀[𝑓 ]( ⃗𝑢) = 1
√det i𝐵

∫
∞

−∞
∫

∞

−∞
𝑓 ( ⃗𝑣) exp[i𝜋𝑝( ⃗𝑢, ⃗𝑣)], (12a)

where

𝑝( ⃗𝑢, ⃗𝑣) = ⃗𝑢 tr𝐷𝐵−1 ⃗𝑢 − 2 ⃗𝑣 tr𝐵−1 ⃗𝑢 + ⃗𝑣 tr𝐵−1𝐴 ⃗𝑣. (12b)

As in the 1D case, the phase of the leading factor in (12a)
“requires some care” [1, Ch. 1]. In addition, the 2D LCT also
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Figure 3: Test of separable 2D LCT. Top row: real and imagi-
nary parts of initial 2D signal. Subsequent rows: respectively
one, two, and three applications of the LCT corresponding
to 𝑀𝑥 = 𝑀𝑦 = 𝑅(120°), a 120° degree rotation. The last row
should therefore appear identical to the first, and differences
reflect the accuracy in this example.

obeys the group property (3), with the same consequences
for ease of computation.

For the case of an optical system with no coupling between
the planes, the corresponding LCT is called separable, and
can be computed as a concatenation 1D LCTs applied in the
separate planes. Figure 3 shows the results of a simple test.

FUTURE WORK
In future work on libLCT, we shall (i) implement the

non-separable 2D LCT; (ii) implement a unit test suite; and
(iii) execute and publish a set of computational benchmarks.

APPENDIX: IMPLEMENTATION OF AN
OPEN-SOURCE LCT LIBRARY

Herewith a précis of our Python library libLCT.

# NB: 'in_signal' must have the form
# ( dX, signal_array )
# where signal_array denotes a 1d numpy array
# representing a signal with sample spacing dX.

# === Manifest ===
# - convert between parameter representations
convert_params_3to4(alpha, beta, gamma)
convert_params_4to3(M_lct)
# - component functions
lct_abscissae(nn, du, ishift = False)
resample_signal(k, in_signal)
scale_signal(m, in_signal)
lct_fourier(in_signal)
chirp_multiply(q, in_signal)
# - decompose LCT matrix
lct_decomposition(M_lct)
# - apply sequence of transformations
apply_lct_1d(M_lct, in_signal)

# decompose LCT matrix
def lct_decomposition(M_lct):

alpha, beta, gamma = convert_params_4to3(M_lct)
ag = abs(gamma)
if ag <= 1:

k = 1 + ag + abs(alpha) / beta ** 2 \
* (1 + ag) ** 2

seq = [[ 'SCL', beta ],
['RSMP', 2. ],
[ 'CM', - gamma / beta ** 2 ],
['LCFT', 0 ],
['RSMP', k/2 ],
[ 'CM', - alpha ]]

else:
k = 1 + 1/ag + abs(alpha - beta ** 2 / gamma) \

/ beta ** 2 * (1 + ag) ** 2
seq = [[ 'SCL', - gamma / beta ],

['LCFT', 0 ],
['RSMP', 2. ],
[ 'CM', gamma / beta ** 2 ],
['LCFT', 0 ],
['RSMP', k/2 ],
[ 'CM', - alpha + beta ** 2 / gamma ]]

return seq

# apply sequence of transformations
def apply_lct(M_lct, in_signal):

seq = lct_decomposition(M_lct)
signal0 = in_signal
for lct in seq:

if lct[0] == 'CM':
signal1 = chirp_multiply(lct[1], signal0)
signal0 = signal1

elif lct[0] == 'LCFT':
signal1 = lct_fourier(signal0)
signal0 = signal1

elif lct[0] == 'SCL':
signal1 = scale_signal(lct[1], signal0)
signal0 = signal1

elif lct[0] == 'RSMP':
signal1 = resample_signal(lct[1], signal0)
signal0 = signal1

else:
assert False, 'LCT code ' + lct[0] + \

' not recognized! Exiting now.'
return -1

return signal1
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