MOPOMS —  Poster Session - Matsaman   (13-Jun-22   14:00—16:00)
Paper Title Page
MOPOMS001 Progress on Development of AXSIS: A Femtosecond THz-Driven MeV Accelerator and keV X-Ray Source 621
 
  • N.H. Matlis, M. Fakhari, F.X. Kärtner, T. Kroh, M. Pergament, T. Rohwer, M. Vahdani, D. Zhang
    CFEL, Hamburg, Germany
  • R. Bazrafshan, F.X. Kärtner, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • R. Bazrafshan, M. Vahdani
    University of Hamburg, Hamburg, Germany
  • M. Fakhari, D. Zhang
    DESY, Hamburg, Germany
  • F.X. Kärtner, T. Kroh
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
 
  Funding: This work was supported by KA908-12/1 of the Deutsche Forschungsgemeinschaft and by the ERC under the European Union’s Seventh Framework Program (FP7/2007-2013) through Synergy Grant AXSIS (609920).
We re­port on the de­sign and progress in im­ple­ment­ing a THz-dri­ven rel­a­tivis­tic elec­tron ac­cel­er­a­tor and as­so­ci­ated X-ray source, the AXSIS Fa­cil­ity at DESY. We have de­vel­oped a full lay­out of the ma­chine based on a THz gun fol­lowed by a multi-cy­cle di­elec­tric loaded metal wave­guide THz lin­ear ac­cel­er­a­tor to gen­er­ate 20 MeV level, 10 fs elec­tron bunches. The re­quired THz pulse en­er­gies are on the mJ-level for the gun and multi-10-mJ-level for the THz linac. Cus­tomized laser tech­nolo­gies have been de­vel­oped al­low­ing for the gen­er­a­tion of these pulses up to 1 kHz rep­e­ti­tion rate. The gen­er­ated elec­tron bunches are then fo­cused into a counter prop­a­gat­ing op­ti­cal pulse ’op­ti­cal un­du­la­tor’ to gen­er­ate X-rays in the 6-7 keV range. We will dis­cuss the over­all lay­out of the ma­chine, sta­tus of its im­ple­men­ta­tion and tech­ni­cal chal­lenges in the dif­fer­ent com­po­nents as well as di­ag­nos­tics of this new type of ac­cel­er­a­tor and X-ray source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS001  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS003 Single-Sided Pumped Compact Terahertz Driven Booster Accelerator 625
SUSPMF026   use link to see paper's listing under its alternate paper code  
 
  • T. Kroh, R. Bazrafshan, F.X. Kärtner, N.H. Matlis
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, M. Pergament, T. Rohwer, M. Vahdani, D. Zhang
    CFEL, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • K. Kawase
    JAEA, Kizugawa, Japan
 
  Funding: European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant ’Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy’ (609920).
Scal­ing the RF-ac­cel­er­a­tor con­cept to ter­a­hertz (THz) fre­quen­cies brings sev­eral com­pelling ad­van­tages, in­clud­ing com­pact­ness, in­trin­sic tim­ing be­tween the pho­toe­mis­sion and dri­ving field sources, and high field gra­di­ents as­so­ci­ated with the short THz wave­length and high break­down thresh­old. Re­cent demon­stra­tions of such THz pow­ered ac­cel­er­a­tors re­lied on two counter-prop­a­gat­ing sin­gle-cy­cle THz pulses. How­ever, to achieve high en­ergy gains in the ac­cel­er­a­tion process high en­ergy THz pulses are needed which in turn re­quire com­plex op­ti­cal se­tups. Here, we pre­sent on the de­vel­op­ment of a match­box sized multi-lay­ered ac­cel­er­a­tor de­signed to boost the 50 keV out­put of a DC elec­tron gun to en­er­gies of ~400 keV that only re­quires a sin­gle THz pulse to be pow­ered. An in­te­grated tun­able mir­ror in­side the struc­ture in­ter­feres the front of the dri­ving THz pulse with its rear part such that the field in the in­ter­ac­tion re­gion is op­ti­mized for ef­fi­cient ac­cel­er­a­tion. This re­duces the com­plex­ity of the re­quired op­ti­cal setup. Such a com­pact booster ac­cel­er­a­tor is very promis­ing as elec­tron source in ul­tra­fast elec­tron dif­frac­tion ex­per­i­ments and as booster stage prior to THz based LINACs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS003  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS004 Optimizing Activation Recipe with Cs, Te, O for GaAs-Based Photocathodes 628
 
  • J. Bae, M.B. Andorf, I.V. Bazarov, A. Galdi, J.M. Maxson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • L. Cultrera
    BNL, Upton, New York, USA
 
  Funding: Department of Energy (DOE) DE-SC0021039.
GaAs-based pho­to­cath­odes are the most pop­u­lar elec­tron sources for pro­duc­ing highly spin-po­lar­ized elec­tron beams in ac­cel­er­a­tor physics and con­densed mat­ter physics. Spin-po­lar­ized pho­toe­mis­sion re­quires ac­ti­va­tion to achieve Neg­a­tive Elec­tron Affin­ity (NEA). Con­ven­tional NEA sur­faces such as CS-O/NF3 are ex­tremely vac­uum sen­si­tive, and this re­sults in rapid QE degra­da­tion. In this work, we ac­ti­vated GaAs with var­i­ous recipes using Cs, Te, and oxy­gen. We demon­strate NEA ac­ti­va­tion on GaAs sur­faces. Among Cs-Te ac­ti­vated sam­ples, the ox­i­dized sam­ple showed the high­est QE and longest life­time at 780 nm.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS004  
About • Received ※ 04 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS005 Start-to-End Simulations of a THz-Driven ICS Source 631
 
  • M. Fakhari, Y.-K. Kan
    DESY, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • N.H. Matlis, M. Vahdanipresenter
    CFEL, Hamburg, Germany
  • M. Vahdanipresenter
    University of Hamburg, Hamburg, Germany
 
  We pre­sent start-to-end sim­u­la­tions for a fully THz-dri­ven table-top X-ray source. A di­elec­tric-loaded metal­lic cav­ity op­er­at­ing at its Higher Order Mode ac­cel­er­ates 1 PC photo emit­ted elec­tron bunch up to 430 keV ki­netic en­ergy. The out­put beam of the gun is in­jected into a di­elec­tric-loaded wave­guide where phase ve­loc­ity of the trav­el­ing wave is ad­justed in such a way that elec­trons see an ac­cel­er­at­ing field all the way along the tube re­sult­ing to an 18.5-MeV out­put beam which is then trans­ported to an in­verse Comp­ton scat­ter­ing (ICS) stage. The in­jec­tion phase of the elec­trons can be tuned to in­tro­duce a neg­a­tive en­ergy chirp to the elec­tron bunch lead­ing to a bal­lis­tic bunch com­pres­sion after the linac. In ad­di­tion, a set of per­ma­nent mag­net quadrupoles is de­signed to focus the beam at the ICS in­ter­ac­tion point where the elec­tron beam scat­ters off a 250-mJ, 0.5ps, 1-µm laser beam and gen­er­ates an X-ray beam with 2.6x107 pho­tons per shot con­tain­ing pho­ton en­er­gies 2keV< Eph <8keV in a beam with 50 mrad half open­ing angle. The re­quired ter­a­hertz waves to power the gun and linac are 550-ps pulses at 300 GHz con­tain­ing 5 mJ and 23 mJ en­er­gies re­spec­tively with 1 kHz rep­e­ti­tion rate.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS005  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS007 Optimized Dielectric Loaded Waveguide Terahertz LINACs 634
SUSPMF028   use link to see paper's listing under its alternate paper code  
 
  • M. Vahdani
    University of Hamburg, Hamburg, Germany
  • M. Fakhari
    DESY, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Vahdani
    CFEL, Hamburg, Germany
 
  Di­elec­tric loaded wave­guides (DLW) pow­ered by mul­ti­cy­cle ter­a­hertz (THz) pulses have shown promis­ing per­for­mance as com­pact lin­ear ac­cel­er­a­tors due to higher break­down fields at THz fre­quen­cies com­pared to con­ven­tional RF com­po­nents. By chang­ing the di­elec­tric di­men­sions one can con­trol phase and group ve­loc­i­ties of the THz pulse in­side the DLW. Since op­ti­mum wave­guide di­men­sions are de­pen­dent on ini­tial elec­tron en­ergy, THz pulse en­ergy, and etc., it is worth­while to de­ter­mine op­ti­mum val­ues for dif­fer­ent con­di­tions to max­i­mize final ki­netic en­ergy. In this work, we pre­sent a com­bined an­a­lyt­i­cal/nu­mer­i­cal guide to de­ter­mine the op­ti­mum DLW pa­ra­me­ters for sin­gle on-axis elec­tron ac­cel­er­a­tion. We also in­tro­duce nor­mal­ized graphic rep­re­sen­ta­tions to vi­su­al­ize op­ti­mum de­signs for dif­fer­ent ini­tial elec­tron and THz pulse en­er­gies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS007  
About • Received ※ 09 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS008 Diagnosis of Transverse Emittance in Laser-Driven Ion Beam 637
SUSPMF029   use link to see paper's listing under its alternate paper code  
 
  • T. Miyatake, I. Takemoto, Y. Watanabe
    Kyushu University, Interdisciplinary Graduate School of Engineering Sciences, Kasuga-Shi, Japan
  • T.-H. Dinh, M. Kando, S. Kojima, K. Kondo, K. Kondo, M. Nishikino, M. Nishiuchi, H. Sakaki
    National Institutes for Quantum Science and Technology, Kyoto, Japan
 
  Funding: This work was supported by JST-MIRAI R&D Program No. JPMJMI17A1. This work was supported by JSPS KAKENHI Grant Number JP21J22132.
Ion beam pro­duced in laser-dri­ven ion ac­cel­er­a­tion by ul­tra-in­tense lasers has char­ac­ter­is­tics of high peak cur-rent and low emit­tance. These char­ac­ter­is­tics be­come an ad­van­tage to op­er­ate the re­quest for the beam ap­plica-tion. There­fore, we study how to con­trol the pa­ra­me­ters with the laser-plasma in­ter­ac­tion. Here, we used 2D Par­ti­cle-in-Cell code to sim­u­late the laser-dri­ven ion ac­cel­er­a­tion and in­ves­ti­gated the re­sults in terms of trans­verse emit­tance, beam cur­rent, and bright­ness. The laser spot size and tar­get thick­ness were changed in the sim­u­la­tion. And, these qual­i­ta­tive re­sults show that in­ter­ac­tion tar­get thick­ness is a major fac­tor in con­trol­ling beam char­ac­ter­is­tics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS008  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS010 Beam Dynamics and Drive Beam Losses Within a Planar Dielectric Wakefield Accelerator 641
SUSPMF030   use link to see paper's listing under its alternate paper code  
 
  • T.J. Overton, Y.M. Saveliev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • T.H. Pacey, Y.M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: Science and Technology Funding Council (STFC) Student Grant
Beam-dri­ven di­elec­tric wake­field ac­cel­er­a­tors (DWA) have the po­ten­tial to pro­vide ac­cel­er­at­ing gra­di­ents in the GV/m range. The trans­verse dy­nam­ics in such de­vices need to be un­der­stood to avoid in­sta­bil­i­ties over long trans­port dis­tances and fa­cil­i­tate beam match­ing to spe­cific ap­pli­ca­tions (e.g. FELs). This pre­sen­ta­tion de­tails sim­u­la­tion stud­ies of the mag­ni­tude of beam-breakup in­sta­bil­ity (BBU) in pla­nar di­elec­tric lined wave­guides (DLWs). These are for DWA drive beams, with high charge and mo­men­tum that can be pro­duced at cur­rent fa­cil­i­ties. Using a se­ries of per­pen­dic­u­lar DLW seg­ments has been pro­posed to con­trol in­sta­bil­i­ties over larger dis­tances. Using self-de­vel­oped soft­ware, the beam dy­nam­ics of a drive beam within a DLW are sim­u­lated and the mag­ni­tude of beam losses along a DLW of vary­ing lengths cal­cu­lated and beam qual­ity preser­va­tion in­ves­ti­gated. Meth­ods to re­duce trans­verse in­sta­bil­i­ties have been ex­plored, and the im­pact of these on the length of a pos­si­ble DWA ac­cel­er­a­tion stage are in­ves­ti­gated. An ac­cel­er­a­tion stage with m-scale length, con­sist­ing of mul­ti­ple al­ter­nat­ing pla­nar DLWs, is sug­gested and preser­va­tion of beam qual­ity along this dis­tance is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS010  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS012 Simulation Studies of Drive Beam Instability in a Dielectric Wakefield Accelerator 645
 
  • W.H. Tan, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • A. Huebl, R. Jambunathan, R. Lehé, A. Myers, T. Rheaume, J.-L. Vay, W. Zhang
    LBNL, Berkeley, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the US DOE award DE-SC0018656 with NIU and DE-AC02-06CH11357 with ANL. This work used resources from NERSC, supported by DOE contract DE-AC02-05CH11231. This research used WarpX, which is supported by the US DOE Exascale Computing Project. Primary WarpX contributors are with LBNL, LLNL, CEA-LIDYL, SLAC, DESY, CERN, and Modern Electron.
Beam-dri­ven collinear wake­field ac­cel­er­a­tion using struc­ture wake­field ac­cel­er­a­tors promises a high gra­di­ent ac­cel­er­a­tion within a smaller phys­i­cal foot­print. Sus­tain­able ex­trac­tion of en­ergy from the drive beam re­lies on pre­cise un­der­stand­ing of its long term dy­nam­ics and the pos­si­ble onset or mit­i­ga­tion of the beam in­sta­bil­ity. The ad­vance of com­pu­ta­tional power and tools makes it pos­si­ble to model the full physics of beam-dri­ven wake­field ac­cel­er­a­tion. Here we re­port on the long-term beam dy­nam­ics stud­ies of a drive beam con­sid­er­ing the ex­am­ple of a di­elec­tric wave­guide using high fi­delity par­ti­cle-in-cell sim­u­la­tions per­formed with WarpX.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS012  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS013 Toward Emittance Measurements at 11.7 GHz Short-Pulse High-Gradient RF Gun 649
 
  • S.V. Kuzikov, C.-J. Jing, E.W. Knight
    Euclid TechLabs, Solon, Ohio, USA
  • G. Chen, C.-J. Jing, P. Piot, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • C.-J. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • P. Piot, W.H. Tanpresenter
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This project is supported with DoE SBIR Phase II Grant #DE-SC0018709.
A short pulse high gra­di­ent RF gun has been re­cently tested at Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) fa­cil­ity. The car­ried-out test showed that the 1,5-cell gun was able to in­ject 3 MeV, up to 100 pC bunches at room tem-per­a­ture being fed by 9 ns up to 300 MW 11.7 GHz puls-es. The cath­ode field was as high as about 400 MV/m. So high field is aimed to mit­i­gate re­peal­ing Coulomb forces sub­stan­tially. In ac­cor­dance with sim­u­la­tions the emit-tance could be as low as less than 0.2 mcm. To ob­tain so low emit­tance in the ex­per­i­ment, the gun is as­sumed to be equipped with a down­stream linac to be fed from the same power ex­trac­tor as the gun it­self. Here we re­port de­sign of the RF power dis­tri­b­u­tion sys­tem split­ting RF power among the gun and the linac, re­sults of low-power tests, and emit­tance mea­sure­ment plans for up­com­ing new ex­per­i­ment at AWA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS013  
About • Received ※ 01 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS014 Commissioning of a High-Gradient X-Band RF Gun Powered by Short RF Pulses from a Wakefield Accelerator 652
SUSPMF040   use link to see paper's listing under its alternate paper code  
 
  • W.H. Tan, X. Lu, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • S.P. Antipov, C.-J. Jing, E.W. Knight, S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
  • D.S. Doran, G. Ha, C.-J. Jing, W. Liu, X. Lu, P. Piot, P. Piot, J.G. Power, J. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-SC0018656 to NIU, DOE SBIR grant No DE-SC0018709 at Euclid Techlabs LLC, and contract No. DE-AC02-06CH11357 with ANL.
A high-gra­di­ent X-band (11.7-GHz) pho­toin­jec­tor de­vel­oped by Eu­clid Tech­labs, was re­cently com­mis­sioned at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA). The sys­tem com­prises a 1+1/2-cell RF gun pow­ered by short RF pulses gen­er­ated as a train of high-charge bunches from the AWA ac­cel­er­a­tor passes through a slow-wave power ex­trac­tion and trans­fer struc­ture. The RF pho­toin­jec­tor was re­li­ably op­er­at­ing with elec­tric fields in ex­cess of 300 MV/m on the pho­to­cath­ode sur­face free of break­down and with an in­signif­i­cant dark-cur­rent level. We re­port on the RF-gun setup, com­mis­sion­ing, and the as­so­ci­ated beam gen­er­a­tion via pho­toe­mis­sion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS014  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS015 Temporal and Spatial Characterization of Ultrafast Terahertz Near-Fields for Particle Acceleration 656
SUSPMF031   use link to see paper's listing under its alternate paper code  
 
  • A.E. Gabriel, M.C. Hoffmann, E.A. Nanni, M.A.K. Othman
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC02-76SF00515.
We have mea­sured the THz near-field in order to in­form the de­sign of im­proved THz-fre­quency ac­cel­er­at­ing struc­tures. THz-fre­quency ac­cel­er­at­ing struc­tures could pro­vide the ac­cel­er­at­ing gra­di­ents needed for next gen­er­a­tion par­ti­cle ac­cel­er­a­tors with com­pact, GV/m-scale de­vices. One of the most promis­ing THz gen­er­a­tion tech­niques for ac­cel­er­a­tor ap­pli­ca­tions is op­ti­cal rec­ti­fi­ca­tion in lithium nio­bate using the tilted pulse front method. How­ever, ac­cel­er­a­tor ap­pli­ca­tions are lim­ited by sig­nif­i­cant losses dur­ing trans­port of THz ra­di­a­tion from the gen­er­at­ing non­lin­ear crys­tal to the ac­cel­er­a­tion struc­ture. In ad­di­tion, the spec­tral prop­er­ties of high-field THz sources make it dif­fi­cult to cou­ple THz ra­di­a­tion into ac­cel­er­at­ing struc­tures. A bet­ter un­der­stand­ing of the THz near-field source prop­er­ties is nec­es­sary for the op­ti­miza­tion of THz trans­port and cou­pling. We have de­vel­oped a tech­nique for de­tailed mea­sure­ment of the THz near-fields and used it to re­con­struct the full tem­po­ral 3D THz near-field close to the LN emis­sion face. Analy­sis of the re­sults from this mea­sure­ment will in­form de­signs of novel struc­tures for use in THz par­ti­cle ac­cel­er­a­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS015  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS016 Application of Nanostructures and Metamaterials in Accelerator Physics 659
 
  • J. Resta-López
    ICMUV, Paterna, Spain
  • Ö. Apsimon, C. Bonțoiu, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • A. Bonatto
    Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
  • B. Galante
    CERN, Meyrin, Switzerland
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work is supported by the Generalitat Valenciana under Grant agreement No. CIDEGENT/2019/058.
Car­bon-based nanos­truc­tures and meta­ma­te­ri­als offer ex­tra­or­di­nary me­chan­i­cal and opto-elec­tri­cal prop­er­ties, which make them suit­able for ap­pli­ca­tions in di­verse fields, in­clud­ing, for ex­am­ple, bio­science, en­ergy tech­nol­ogy and quan­tum com­put­ing. In the lat­est years, im­por­tant R&D ef­forts have been made to in­ves­ti­gate the po­ten­tial use of graphene and car­bon-nan­otube (CNT) based struc­tures to ma­nip­u­late and ac­cel­er­ate par­ti­cle beams. In the same way, the spe­cial in­ter­ac­tion of graphene and CNTs with charged par­ti­cles and elec­tro­mag­netic ra­di­a­tion might open in­ter­est­ing pos­si­bil­i­ties for the de­sign of com­pact co­her­ent ra­di­a­tion sources, and novel beam di­ag­nos­tics tech­niques as well. This paper gives an overview of novel con­cepts based on nanos­truc­tures and meta­ma­te­ri­als with po­ten­tial ap­pli­ca­tion in the field of ac­cel­er­a­tor physics. Sev­eral ex­am­ples are shown and fu­ture prospects dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS016  
About • Received ※ 08 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS017 Beam Transport Simulations Through Final Focus High Energy Transport Lines with Implemented Gabor Lenses 663
 
  • A. Sherjan, M. Droba, O. Meusel, S. Reimann, K.I. Thoma
    IAP, Frankfurt am Main, Germany
  • S. Reimann
    GSI, Darmstadt, Germany
 
  First in­ves­ti­ga­tions on Gabor Lens GL2000 at Goethe Uni­ver­sity have shown that it is pos­si­ble to con­fine a 2m long sta­ble Elec­tron Plasma Col­umn and to apply it as a hadron beam fo­cus­ing de­vice. With this knowl­edge the­o­ret­i­cal im­ple­men­ta­tions of GLs in final focus and trans­fer lines have started. The fo­cus­ing with GLs is a weak but smooth fo­cus­ing in ra­dial di­rec­tion. The GL is a suit­able and in­ex­pen­sive choice in ad­di­tion to the ex­ist­ing fo­cus­ing el­e­ments eg. mag­netic quadrupoles. The de­vice helps to im­prove beam qual­ity and min­i­mize losses over long dis­tances. The in­ves­ti­ga­tion of rel­a­tivis­tic hadron beams in GeV range using the ex­am­ple of the pro­posed NA61/SHINE VLE-beam­line at CERN is car­ried out and will be pre­sented. Thin-ma­trix sim­u­la­tions with a gen­er­ated dis­tri­b­u­tion as well as field map sim­u­la­tions with gen­er­ated and re­al­is­tic dis­tri­b­u­tions (Geant4) at 1 - 6 GeV/c have been analysed and com­pared. In ad­di­tion, the H4-beam­line at North Area (CERN) is pro­posed to im­ple­ment GLs for ex­per­i­men­tal tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS017  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS018 Tungsten Electron Emitter (TE²) with Direct Heated Cathode by Plasma Stream 667
 
  • K.I. Thoma, M. Droba, T. Dönges, O. Meusel, H. Podlech, K. Schulte-Urlichs
    IAP, Frankfurt am Main, Germany
  • K. Schulte-Urlichs, K.I. Thoma
    GSI, Darmstadt, Germany
 
  At Goethe-Uni­ver­sity, a novel con­cept of heat­ing metal­lic cath­odes is cur­rently under in­ves­ti­ga­tion. In the scope of the ARIES col­lab­o­ra­tion WP16, an RF-mod­u­lated elec­tron gun was de­vel­oped and man­u­fac­tured for ap­pli­ca­tion in elec­tron lenses for space charge com­pen­sa­tion. The goal of this pro­ject is to in­crease the in­ten­sity of pri­mary beams, es­pe­cially in low en­ergy booster syn­chro­trons like the SIS18 and SIS100 at GSI/FAIR or the SPS at CERN. The gun was de­signed to pro­duce elec­tron cur­rents of 10 A at ex­trac­tion volt­ages of 30 kV. The tung­sten elec­tron emit­ter (TE²) and the grid elec­trode were de­signed and man­u­fac­tured to be in­te­grated in the ex­trac­tor of the orig­i­nal vol­ume type ion source. Sig­nif­i­cant ef­fort was put into a ro­bust and flex­i­ble de­sign with highly re­li­able key com­po­nents. The cath­ode is heated by a plasma stream gen­er­ated in the plasma cham­ber of the source. Dif­fer­ent heat­ing op­tions of the cath­ode are cur­rently being stud­ied. This con­tri­bu­tion pre­sents the work­ing prin­ci­ples of the elec­tron gun and first mea­sure­ments re­sults of cath­ode heat­ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS018  
About • Received ※ 18 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS019 The New SPARC_LAB RF Photo-Injector 671
 
  • D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F. Cardelli, G. Costa, M. Del Franco, G. Di Pirro, L. Faillace, M. Ferrario, G. Franzini, A. Gallo, A. Giribono, L. Piersanti, L. Sabbatini, A. Stella, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • A. Battisti, E. Chiadroni, G. Di Raddo, A. Liedl, V.L. Lollo, L. Pellegrino, R. Pompili, S. Romeo, V. Shpakov, C. Vaccarezza, F. Villa
    LNF-INFN, Frascati, Italy
  • M. Carillo, E. Chiadroni
    Sapienza University of Rome, Rome, Italy
  • A. Cianchi, M. Galletti
    Università di Roma II Tor Vergata, Roma, Italy
 
  A new RF photo-in­jec­tor has been de­signed, re­al­ized and suc­cess­fully in­stalled at the SPAR­C_LAB fa­cil­ity (INFN-LNF, Fras­cati, Rome). It is based on a 1.6 cell RF gun fab­ri­cated with the new braz­ing free tech­nol­ogy re­cently de­vel­oped at the Na­tional Lab­o­ra­to­ries of Fras­cati. The elec­tro­mag­netic de­sign has been op­ti­mized to have a full com­pen­sa­tion of the di­pole and quadru­pole field com­po­nents in­tro­duced by the cou­pling hole with an im­prove­ment of the ef­fec­tive pump­ing speed with two added pump­ing ports. The gun is over­cou­pled (\beta=2) to re­duce the fill­ing time and to allow the op­er­a­tion with short RF pulses. The over­all in­jec­tor in­te­grates a new so­le­noid with a re­mote con­trol of the trans­verse po­si­tion and a vari­able skew quadru­pole for the com­pen­sa­tion of resid­ual quadru­pole field com­po­nents. It also al­lows an on axis laser in­jec­tion sys­tem with the last mir­ror in air, and the pos­si­bil­ity of a fu­ture in­te­gra­tion of an X/C band cav­ity lin­earizer. In the paper we re­port the main char­ac­ter­is­tics of the elec­tro­mag­netic and me­chan­i­cal de­sign and the low and high power test re­sults that shows the ex­tremely good per­fo­mances of the new de­vice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS019  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS020 Dark Current Studies for a High Gradient SW C-Band RF Gun 675
 
  • F. Cardelli, D. Alesinipresenter, L. Faillace, A. Giribono, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • G. Di Raddo
    LNF-INFN, Frascati, Italy
  • T.G. Lucas
    PSI, Villigen PSI, Switzerland
 
  It is now well-es­tab­lished that for the gen­er­a­tion of very high bright­ness beams, re­quired for fourth gen­er­a­tion light sources, it is highly ad­van­ta­geous to use in­jec­tors based on Ra­diofre­quency photo-guns with very high peak elec­tric fields on the cath­ode (>120 MV/m). This very high sur­face elec­tric field leads to the gen­er­a­tion of un­de­sir­able elec­trons due to the field emis­sion ef­fect. The emit­ted elec­trons can be cap­tured and prop­a­gate along the Linac form­ing a dark cur­rent beam, lead­ing to back­ground ra­di­a­tion that can dam­age the in­stru­men­ta­tion and ra­dioac­ti­vate com­po­nents. Con­se­quently, it is im­por­tant that the emis­sion of these elec­trons, and their sub­se­quent trans­porta­tion, is care­fully eval­u­ated. Re­cently, in the frame­work of the I-FAST pro­ject, a high gra­di­ent, stand­ing wave, C-band (5712 MHz) RF pho­to­gun has been de­signed and will be re­al­ized soon. In this paper, the re­sults of dark cur­rent stud­ies and sim­u­la­tions are il­lus­trated. The trans­port ef­fi­ciency and the spec­trum of the dark cur­rent have been eval­u­ated by Par­ti­cle-In-Cell sim­u­la­tions for dif­fer­ent cath­ode peak field val­ues con­sid­er­ing also the ef­fect of the fo­cus­ing so­le­noid on the dark cur­rent beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS020  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS021 The New C Band Gun for the Next Generation RF Photo-Injectors 679
 
  • D. Alesini, M. Ferrario, A. Giribono, A. Gizzi, L. Piersanti, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • F. Cardelli, G. Di Raddo, L. Faillace, S. Lauciani, A. Liedl, L. Pellegrino, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • G. Castorina
    AVO-ADAM, Meyrin, Switzerland
  • M. Croia
    ENEA Casaccia, Roma, Italy
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
  • G. Pedrocchi
    SBAI, Roma, Italy
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA No 101004730 and INFN Commission V.
RF photo-in­jec­tors are widely used in mod­ern fa­cil­i­ties, es­pe­cially in FEL, as very low-emit­tance and high-bright­ness elec­tron sources. Presently, the RF tech­nol­ogy mostly used for RF guns is the S band (3 GHz) with typ­i­cal cath­ode peak fields of 80-120 MV/m and rep­e­ti­tion rates lower than 120 Hz. There are solid rea­sons to be­lieve that the fre­quency step-up from S band to C band (6 GHz) can pro­vide a strong im­prove­ment of the beam qual­ity due to the po­ten­tial higher achiev­able cath­ode field (>160 MV/m) and higher rep­e­ti­tion rate (that can reach the kHz level). In the con­test of the Eu­ro­pean I.​FAST pro­ject, a new C band gun has been de­signed and will be re­al­ized and tested. It is a 2.5 cell stand­ing wave cav­ity with a four port mode launcher, de­signed to op­er­ate with short RF pulses (<300 ns) and cath­ode peak field larger than 160 MV/m. In the paper we pre­sent the elec­tro­mag­netic and thermo-me­chan­i­cal de­sign and the re­sults of the pro­to­typ­ing ac­tiv­ity and rf mea­sure­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS021  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS022 Studies of a Ka-Band High Power Klystron Amplifier at INFN-LNF 683
 
  • M. Behtouei, L. Faillace, A. Mostacci, B. Spataro
    LNF-INFN, Frascati, Italy
  • F. Bosco, M. Carillopresenter, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • F. Di Paolo, S. Fantauzzi, A. Leggieri, F. Marrese, L. Valletti
    Università degli Studi di Roma "Tor Vergata", Roma, Italy
  • G. Torrisi
    INFN/LNS, Catania, Italy
 
  In the frame­work of the Com­pact Light XLS pro­ject, a Ka-band lin­earizer with elec­tric field rang­ing from 100 to 150 MV/m is re­quested. In order to feed this struc­ture, a proper Ka-band high power kly­stron am­pli­fier with a high ef­fi­ciency is needed. This paper re­ports a pos­si­ble so­lu­tion for a kly­stron am­pli­fier op­er­at­ing on the TM010 mode at 36 GHz, the third har­monic of the 12 GHz linac fre­quency, with an ef­fi­ciency of 44% and 10.6 MW ra­diofre­quency out­put power. We dis­cuss also here the high-power DC gun with the re­lated mag­netic fo­cus­ing sys­tem, the RF beam dy­nam­ics and fi­nally the mul­ti­physics analy­sis of a high- power mi­crowave win­dow for a Ka-band kly­stron pro­vid­ing 16MW of peak power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS022  
About • Received ※ 18 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS023 Start-to-End Beam-Dynamics Simulations of a Compact C-Band Electron Beam Source for High Spectral Brilliance Applications 687
 
  • L. Faillace, M. Behtouei, B. Spataro, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • R.B. Agustsson, I.I. Gadjev, S.V. Kutsaev, A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • F. Bosco, M. Carillopresenter, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colorado, USA
  • O. Camacho, A. Fukasawa, N. Majernik, J.B. Rosenzweig, O. Williams
    UCLA, Los Angeles, USA
  • A. Giribono
    INFN/LNF, Frascati, Italy
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: This work is partially supported by DARPA under the Contract No. HR001120C0072, by DOE Contract DE-SC0009914, DOE Contract DE-SC0020409, and by the National Science Foundation Grant No. PHY-1549132.
Pro­pos­als for new lin­ear ac­cel­er­a­tor-based fa­cil­i­ties are flour­ish­ing world-wide with the aim of high spec­tral bril­liance ra­di­a­tion sources. Most of these ac­cel­er­a­tors are based on elec­tron beams, with a va­ri­ety of ap­pli­ca­tions in in­dus­try, re­search and med­i­cine such as col­lid­ers, free-elec­tron lasers, wake-field ac­cel­er­a­tors, co­her­ent THz and in­verse Comp­ton scat­ter­ing X/’ sources as well as high-res­o­lu­tion di­ag­nos­tics tools in bio­med­ical sci­ence. In order to ob­tain high-qual­ity elec­tron beams in a small foot­print, we pre­sent the op­ti­miza­tion de­sign of a C-band lin­ear ac­cel­er­a­tor ma­chine. Dri­ven by a novel com­pact C-band hy­brid pho­toin­jec­tor, it will yield ul­tra-short elec­tron bunches of few 100’s pC di­rectly from in­jec­tion with ul­tra-low emit­tance, frac­tion of mm-mrad, and a few hun­dred fs length si­mul­ta­ne­ously, there­fore sat­is­fy­ing full 6D emit­tance com­pen­sa­tion. The nor­mal-con­duct­ing linacs are based on a novel high-ef­fi­ciency de­sign with gra­di­ents up to 50 MV/m. The beam max­i­mum en­ergy can be eas­ily ad­justed in the mid-GeV’s range. In this paper, we dis­cuss the start-to-end beam-dy­nam­ics sim­u­la­tions in de­tails.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS023  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS025 Photocathode Performance Characterisation of Ultra-Thin MgO Films on Polycrystalline Copper 691
SUSPMF039   use link to see paper's listing under its alternate paper code  
 
  • C. Benjamin, H.M. Churn, L.B. Jones, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G.R. Bell, C. Benjamin, T.J. Rehaag
    University of Warwick, Coventry, United Kingdom
  • H.M. Churn, L.B. Jones, T.C.Q. Noakes
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Department of Physics, The University of Warwick, Coventry, United Kingdom STFC ASTeC, Daresbury, Warrington, United Kingdom WA4 4AD
The per­for­mance ex­pected from the next gen­er­a­tion of elec­tron ac­cel­er­a­tors is dri­ving re­search into pho­to­cath­ode tech­nol­ogy as this fun­da­men­tally lim­its the achiev­able beam qual­ity. The per­for­mance char­ac­ter­is­tics of a pho­to­cath­ode are most no­tably; nor­malised emit­tance, bright­ness and en­ergy spread*. Ultra–thin Oxide films on metal sub­strates have been shown to lower the work func­tion (WF) of the sur­face, en­hanc­ing com­monly utilised metal pho­to­cath­odes, po­ten­tially im­prov­ing life­time and per­for­mance char­ac­ter­is­tics**. We pre­sent the char­ac­ter­i­sa­tion of two MgO/Cu pho­to­cath­odes grown at Dares­bury. The sur­face prop­er­ties such as; sur­face rough­ness, el­e­men­tal com­po­si­tion and WF, have been stud­ied using atomic force mi­croscopy (AFM), X-ray pho­to­elec­tron spec­troscopy (XPS) and ul­tra­vi­o­let pho­to­elec­tron spec­troscopy (UPS). The pho­toe­mis­sive prop­er­ties have been char­ac­terised with quan­tum ef­fi­ciency (QE) mea­sure­ments at 266 nm. Ad­di­tion­ally, we mea­sure the Trans­verse En­ergy Dis­tri­b­u­tion Curves (TEDC) for these pho­to­cath­odes under il­lu­mi­na­tion at var­i­ous wave­lengths using ASTeC’s Trans­verse En­ergy Spread Spec­trom­e­ter (TESS) and ex­tract the Mean Trans­verse En­ergy (MTE)***.
*D.H. Dowell, et al, Nucl. Instr. and Meth A (2010), doi:10.1016/j.nima.2010.03.104
**V. Chang, et al, Phys. Rev. B (2018), doi.org/10.1103/PhysRevB.97.155436
***Proc. FEL ’13, TUPPS033, 290-293
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS025  
About • Received ※ 19 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS027 Synthesis of First Caesium Telluride Photocathode at ASTeC Using Sequential and Co-Deposition Method 695
 
  • R. Valizadeh, A.N. Hannah
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • V.R. Dhanak
    The University of Liverpool, Liverpool, United Kingdom
  • S. Lederer
    DESY, Hamburg, Germany
 
  Cae­sium Tel­luride (Cs2Te) pho­to­cath­odes, are the elec-tron source of choice, by many global ac­cel­er­a­tors such as Eu­ro­pean XFEL, FLASH and AWA. It of­fers high quan­tum ef­fi­ciency and rea­son­able op­er­a­tional life­time with lower vac­uum re­quire­ments than multi-al­kali pho­to­cath­odes. In this paper, we re­port on the first syn­the­sised CsxTe pho­to­cath­odes at ASTeC, using both se­quen­tial and co-de­po­si­tion of Te and Cs on Mo sub­strate. Te de­po­si­tion is car­ried out using ion beam de­po­si­tion whilst the Cs is de­posited using a SAES get­ter al­kali. The ion beam de­po­si­tion of Te pro­vides a high de­gree of con­trol to give a dense, smooth layer with a re­pro­ducible film thick­ness. The chem­i­cal state with re­spect to film com­po­si­tion of the de­posited CsxTe is de­ter­mined with in-situ XPS anal-yses. The films ex­hibit a quan­tum ef­fi­ciency be­tween 7.5 to 9 % at 266 nm wave­length.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS027  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS028 Stability and Lifetime Studies of Carbon Nanotubes for Electron Cooling in ELENA 699
 
  • B. Galante, G. Tranquille
    CERN, Meyrin, Switzerland
  • J. Resta-López, C.P. Welschpresenter
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Resta-López, C.P. Welschpresenter
    The University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López
    ICMUV, Paterna, Spain
 
  Funding: Work supported by EU Horizon 2020 research and innovation programme under the Marie Sk’odowska-Curie grant agreement No 721559.
Elec­tron cool­ing is a fun­da­men­tal process to guar­an­tee beam qual­ity in low en­ergy an­ti­mat­ter fa­cil­i­ties. In ELENA, the elec­tron cooler re­duces the emit­tance blow-up of the an­tipro­ton beam so that a fo­cused and bright beam can be de­liv­ered to the ex­per­i­ments at the un­prece­dent­edly low en­ergy of 100 keV. To achieve a cold beam at this low en­ergy, the elec­tron gun must emit a mono­en­er­getic and rel­a­tively in­tense elec­tron beam. An op­ti­miza­tion of the elec­tron gun in­volv­ing a cold cath­ode is stud­ied to in­ves­ti­gate the fea­si­bil­ity of using car­bon nan­otubes (CNTs) as cold elec­tron field emit­ters. CNTs are con­sid­ered among the most promis­ing field emit­ting ma­te­ri­als. How­ever, sta­bil­ity data for emis­sion over hun­dreds of hours, as well as life­time and con­di­tion­ing process stud­ies to en­sure op­ti­mal per­for­mance, are still in­com­plete or miss­ing, es­pe­cially if the aim is to use them in op­er­a­tion. This con­tri­bu­tion re­ports ex­per­i­ments that char­ac­ter­ize these prop­er­ties and as­sess whether CNTs are suit­able to be used as cold elec­tron field emit­ters for many hun­dreds of hours.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS028  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS029 HPC Modeling of a High-Gradient C-Band Linac for Hard X-Ray Free-Electron Lasers 703
 
  • T.B. Bolin, S. Biedron
    UNM-ECE, Albuquerque, USA
  • S. Sosa
    ODU, Norfolk, Virginia, USA
 
  The pro­duc­tion of soft to hard x-rays (up to 25 keV) at XFEL (x-ray free-elec­tron laser) fa­cil­i­ties has en­abled new de­vel­op­ments in a broad range of dis­ci­plines. Great po­ten­tial ex­ists for new sci­en­tific dis­cov­ery at higher en­er­gies (42+ keV) such as en­vi­sioned at MaRIE (Mat­ter-Ra­di­a­tion In­ter­ac­tions in Ex­tremes) at Los Alamos Na­tional Lab­o­ra­tory. These in­stru­ments can re­quire a large amount of real es­tate, which quickly es­ca­lates costs: The dri­ver of the FEL is typ­i­cally an elec­tron beam lin­ear ac­cel­er­a­tor (LINAC) and the need for higher beam en­er­gies ca­pa­ble of gen­er­at­ing these X-rays can dic­tate that the linac be­comes longer. State of art ac­cel­er­at­ing tech­nol­ogy is re­quired to re­duce the linac length by re­duc­ing the size of the cav­i­ties, pro­vid­ing for com­pact, high-fre­quency, high ac­cel­er­a­tion gra­di­ents. Here, we de­scribe using the Ar­gonne Lead­er­ship Com­put­ing Fa­cil­ity (ALCF) to fa­cil­i­tate our in­ves­ti­ga­tions into de­sign con­cepts for fu­ture XFEL high-gra­di­ent LINAC’s in the C-band (~4-8 GHz). We in­ves­ti­gate two dif­fer­ent trav­el­ing wave (TW) geome­tries op­ti­mized for high-gra­di­ent op­er­a­tion as mod­eled at the ALCF using VSim soft­ware.*
* https://www.txcorp.com
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS029  
About • Received ※ 03 July 2022 — Accepted ※ 04 July 2022 — Issue date ※ 08 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS032 Compact-Two-Octave-Spanning Perpendicular Kicker of MeV Electrons Based on a Cubic Magnet Dipole Array 706
 
  • T. Rohwer, R. Bazrafshan, F.X. Kärtner, N.H. Matlis
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • R. Bazrafshan
    University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    CFEL, Hamburg, Germany
  • P. Vagin
    DESY, Hamburg, Germany
 
  Funding: This work has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant AXSIS (609920).
New com­pact par­ti­cle ac­cel­er­a­tion struc­tures, in­clud­ing but not lim­ited to plasma, THz and di­rect laser dri­ven ac­cel­er­a­tors, have in com­mon that they cover a wide en­ergy range of po­ten­tial final en­er­gies and often show a large en­ergy spread. More­over, they may ini­tially have a rather large emit­tance. To an­a­lyze the en­ergy range of a sin­gle shot and/or to de­flect the beam to safely dump the elec­trons away from an end-sta­tion re­quires an elec­tron kicker cov­er­ing a large en­ergy range. Here, we pre­sent a mag­netic di­pole struc­ture based on a 2D Hal­bach array. For the cur­rent ex­per­i­men­tal test ac­cel­er­a­tor in AXSIS, an elec­tron beam in the en­ergy range from 4 to 20 MeV is de­flected by 90 de­gree and en­er­get­i­cally dis­persed. In di­rect con­trast to a sim­ple mag­netic di­pole, an array of cubic mag­net blocks with tai­lored mag­ne­ti­za­tion di­rec­tions al­lows a fo­cus­ing of the beam for both lon­gi­tu­di­nal and trans­verse di­rec­tions at 90 de­gree bend. A generic al­go­rithm op­ti­mizes the mag­netic field array to the pre­de­fined de­flec­tion angle and di­ver­gence. The mod­u­lar array struc­ture, in com­bi­na­tion with the al­go­rithm en­ables a sim­ple ex­change of mag­nets to adapt for dif­fer­ent beam pa­ra­me­ters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS032  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS033 Emittance Measurements of Nanoblade-Enhanced High Field Cathode 709
 
  • G.E. Lawler, N. Majernik, J.I. Mann, N.E. Montanez, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • V.S. Yu
    RadiaBeam, Santa Monica, California, USA
 
  Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132.
High bright­ness cath­odes are in­creas­ingly a focus for ac­cel­er­a­tor ap­pli­ca­tions rang­ing from free elec­tron lasers to ul­tra­fast elec­tron dif­frac­tion. There is fur­ther an in­creas­ing in­ter­est in fab­ri­ca­tion and con­trol of cath­ode sur­face to bet­ter con­trol the emis­sion char­ac­ter­is­tics and im­prove beam bright­ness. One method which we can con­sider is based on well-known sil­i­con nanofab­ri­ca­tion tech­niques which we use to cre­ate pat­terned cath­ode sur­faces. The sharp edges pro­duced lead to field emis­sion in­creases and high bright­ness emis­sion. We have demon­strated that a beam can be suc­cess­fully ex­tracted with a low emit­tance and we have re­con­structed a por­tion of the en­ergy spec­trum. Due to the sim­plic­ity of ex­tended geome­tries in nanofab­ri­ca­tion our beam uniquely pos­sesses a high as­pect ratio in its trans­verse cross sec­tion. We can begin to con­sider mod­i­fi­ca­tions for emit­tance ex­change beam­lines and hav­ing shown the pat­tern­ing prin­ci­ple is sound we can con­sider ad­di­tional pat­terns such as hol­low beams. Fu­ture work will con­tinue to char­ac­ter­ize the pro­duced beam and the ad­di­tion of fab­ri­ca­tion steps to re­move one of the blades in the dou­ble blade geom­e­try in order to more ac­cu­rately char­ac­ter­ize the emis­sion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS033  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS034 Material Normal Energy Distribution for Field Emission Analyses From Monocrystalline Surfaces 713
 
  • J.I. Mann, Y. Li, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • T. Arias, J.K. Nangoi
    Cornell University, Ithaca, New York, USA
 
  Funding: National Science Foundation Grant No. PHY-1549132
Elec­tron field emis­sion is a com­pli­cated phe­nom­e­non which is sen­si­tive not only to the par­tic­u­lar ma­te­r­ial under il­lu­mi­na­tion but also to the spe­cific crys­talline ori­en­ta­tion of the sur­face. Sum­ma­riz­ing the abil­ity for a crys­tal to emit in a par­tic­u­lar di­rec­tion would be of great use when search­ing for good field emit­ters. In this paper we pro­pose a ma­te­r­ial nor­mal en­ergy dis­tri­b­u­tion which de­scribes the abil­ity of the bound elec­trons to tun­nel under an in­tense elec­tric field. This frame­work breaks a com­pu­ta­tion­ally ex­pen­sive 3-D sys­tem down to a source dis­tri­b­u­tion rep­re­sen­ta­tion ap­plic­a­ble for more ef­fi­cient 1-D mod­els. We use the Fowler-Nord­heim frame­work to study the yield and MTE (mean trans­verse en­ergy) from sources in­clud­ing gold, cop­per, and tung­sten in both monocrys­talline and poly­crys­talline forms. We find an in­crease in ef­fec­tive work func­tion for field emis­sion in the (111) di­rec­tion for gold and cop­per as­so­ci­ated with the Bragg plane in­ter­sec­tions of the Fermi sur­face.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS034  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS036 Simulations of Laser Field Emission from Nanostructures with Image Charge Trapping and Band Structure Transitions 717
 
  • B. Wang, G.E. Lawler, J.I. Mannpresenter, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • T. Arias, J.K. Nangoi
    Cornell University, Ithaca, New York, USA
  • S.S. Karkare
    Arizona State University, Tempe, USA
 
  Funding: National Science Foundation Grant No. PHY-1549132
Laser-in­duced field emis­sion from nanos­truc­tures as a means to cre­ate high bright­ness elec­tron beams has been a con­tin­u­ally grow­ing topic of study. Ex­per­i­ments using nanoblade emit­ters have achieved peak fields up­wards of 40 GV/m, beg­ging fur­ther in­ves­ti­ga­tion in this ex­treme regime. A re­cent paper has pro­vided an­a­lyt­i­cal re­duc­tions of the com­mon semi-in­fi­nite Jel­lium sys­tem for pulsed in­ci­dent lasers. We uti­lize these re­sults as well as sim­i­lar pre­vi­ous re­sults to fur­ther un­der­stand the physics un­der­ly­ing elec­tron rescat­ter­ing-type emis­sions. We progress in nu­mer­i­cally eval­u­at­ing the an­a­lyt­i­cal so­lu­tion to at­tempt to more ef­fi­ciently gen­er­ate spec­tra for this sys­tem. Ad­di­tion­ally, we use the full 1-D time-de­pen­dent Schrödinger equa­tion with a Hartree po­ten­tial and a dis­per­sion-re­la­tion tran­si­tion from ma­te­r­ial to vac­uum to study the same sys­tem. We de­ter­mine what im­por­tance the in­clu­sion of the ma­te­r­ial band struc­ture may have on emis­sions using this com­pu­ta­tion­ally chal­leng­ing ap­proach.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS036  
About • Received ※ 08 June 2022 — Revised ※ 21 June 2022 — Accepted ※ 27 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS039 Study of Material Choice in Beam Dumps for Energetic Electron Beams 721
 
  • D. Zhu, R.T. Dowd, Y.E. Tanpresenter
    AS - ANSTO, Clayton, Australia
 
  Lead is typ­i­cally used as the ini­tial tar­get in a de­sign for beam dumps for high en­ergy elec­tron beams (>20 MeV). Elec­tron beams with en­er­gies above 20 MeV are usu­ally built within con­crete bunkers and there­fore the de­sign of any beam dump would just be a lead block (very cost ef­fec­tive) as close to the elec­tron source as pos­si­ble, after a vac­uum flange of some sort. In a study of a hy­po­thet­i­cal 100 MeV elec­tron beam in­side a con­crete bunker with an ex­tremely low dose rate con­straint out­side the bunker, the thick­ness of lead re­quired would have been too re­stric­tive for a com­pact de­sign. In this study we in­ves­ti­gate the po­ten­tial ben­e­fits of de­signs that in­corpo-rate low Z ma­te­ri­als like graphite as the pri­mary tar­get ma­te­r­ial in vac­uum fol­lowed by pro­gres­sively higher Z ma­te­ri­als up to lead. The re­sults show the more dif­fuse elas­tic scat­ter­ing from the pri­mary tar­get re­duces the back scat­tered pho­tons and re­duces the over­all neu­tron gen­era-tion. The ef­fect was a more com­pact de­sign for the beam dump to meet the same dose rate con­straint.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS039  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS040 Radiation Shielding Design for the X-Band Laboratory for Radio-Frequency Test Facility - X-Lab - at the University of Melbourne 724
 
  • M. Volpi, R.P. Rassool, S.L. Sheehy, G. Taylor, S.D. Williams
    The University of Melbourne, Melbourne, Victoria, Australia
  • D. Banon-Caballero
    IFIC, Valencia, Spain
  • M. Boronat, N. Catalán Lasheras
    CERN, Meyrin, Switzerland
  • R.T. Dowd
    AS - ANSTO, Clayton, Australia
  • S.L. Sheehy
    ANSTO, Kirrawee DC New South Wales, Australia
 
  Here we re­port ra­di­a­tion dose es­ti­mates cal­cu­lated for the X-band Lab­o­ra­tory for Ac­cel­er­a­tors and Beams (X-LAB) under con­struc­tion at the Uni­ver­sity of Mel­bourne (UoM). The lab will host a CERN X-band test stand con­tain­ing two 12 GHz 6 MW kly­stron am­pli­fiers. By power com­bi­na­tion through hy­brid cou­plers and the use of pulse com­pres­sors, up to 50 MW of peak power can be sent to any of to ei­ther of the two test slots at pulse rep­e­ti­tion rates up to 400 Hz. The test stand is ded­i­cated to RF con­di­tion­ing and test­ing CLIC’s high gra­di­ent ac­cel­er­at­ing struc­tures be­yond 100 MV/m. This paper also gives a brief overview of the gen­eral prin­ci­ples of ra­di­a­tion pro­tec­tion leg­is­la­tion; ex­plains ra­di­o­log­i­cal quan­ti­ties and units, in­clud­ing some basic facts about ra­dioac­tiv­ity and the bi­o­log­i­cal ef­fects of ra­di­a­tion; and gives an overview of the clas­si­fi­ca­tion of ra­di­o­log­i­cal areas at X-LAB, ra­di­a­tion fields at high-en­ergy ac­cel­er­a­tors, and the ra­di­a­tion mon­i­tor­ing sys­tem used at X-LAB. The bunker de­sign to achieve a dose rate less than an­nual dose limit of 1 mSv is also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS040  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS041 Concrete Shielding Activation for Proton Therapy Systems Using BDSIM and FISPACT-II 728
SUSPMF096   use link to see paper's listing under its alternate paper code  
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
  • F. Stichelbaut
    IBA, Louvain-la-Neuve, Belgium
 
  Pro­ton ther­apy sys­tems are used world­wide for pa­tient treat­ment and fun­da­men­tal re­search. The gen­er­a­tion of sec­ondary par­ti­cles when the beam in­ter­acts with the beam­line el­e­ments is a well-known issue. In par­tic­u­lar, the en­ergy de­grader is the dom­i­nant source of sec­ondary ra­di­a­tion. This poses new chal­lenges for the con­crete shield­ing of com­pact sys­tems and beam­line el­e­ments ac­ti­va­tion com­pu­ta­tion. We use a novel method­ol­ogy to seam­lessly sim­u­late all the processes rel­e­vant to the ac­ti­va­tion eval­u­a­tion. A re­al­is­tic model of the sys­tem is de­vel­oped using Beam De­liv­ery Sim­u­la­tion (BDSIM), a Geant4-based par­ti­cle track­ing code that al­lows a sin­gle model to sim­u­late pri­mary and sec­ondary par­ti­cle track­ing and all par­ti­cle-mat­ter in­ter­ac­tions. The sec­ondary par­ti­cle fluxes ex­tracted from the sim­u­la­tions are pro­vided as input to FIS­PACT-II to com­pute the ac­ti­va­tion by solv­ing the rate equa­tions. This ap­proach is ap­plied to the Ion Beam Ap­pli­ca­tions (IBA) Pro­teus®ONE (P1) sys­tem and the shield­ing of the pro­ton ther­apy re­search cen­tre of Charleroi, Bel­gium. Pro­ton loss dis­tri­b­u­tions are used to model the pro­duc­tion of sec­ondary neu­trals in­side the ac­cel­er­a­tor struc­ture. Two mod­els for the dis­tri­b­u­tion of pro­ton losses are com­pared for the com­pu­ta­tion of the clear­ance index at spe­cific lo­ca­tions of the de­sign. Re­sults show that the vari­a­tion in the ac­cel­er­a­tor loss mod­els can be char­ac­terised as a sys­tem­atic error.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS041  
About • Received ※ 19 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS042 Comparison Between Run 2 TID Measurements and FLUKA Simulations in the CERN LHC Tunnel of the Atlas Insertion Region 732
 
  • D. Prelipcean, K. Biłko, F. Cerutti, A. Ciccotelli, D. Di Francesca, R. García Alía, B. Humannpresenter, G. Lerner, D. Ricci, M. Sabaté-Gilarte
    CERN, Meyrin, Switzerland
  • B. Humannpresenter
    TU Vienna, Wien, Austria
 
  In this paper we pre­sent a sys­tem­atic bench­mark be­tween the sim­u­lated and the mea­sured data for the ra­di­a­tion mon­i­tors use­ful for Ra­di­a­tion to Elec­tron­ics (R2E) stud­ies at the Large Hadron Col­lider (LHC) at CERN. For this pur­pose, the ra­di­a­tion lev­els in the main LHC tun­nel on the right side of the In­ter­ac­tion Point 1 (ATLAS de­tec­tor) are sim­u­lated using the FLUKA Monte Carlo code and com­pared against Total Ion­is­ing Dose (TID) mea­sure­ments per­formed with the Beam Loss Mon­i­tor­ing (BLM) sys­tem, and 180 m of Dis­trib­uted Op­ti­cal Fibre Ra­di­a­tion Sen­sor (DOFRS). Con­sid­er­ing the com­plex­ity and the scale of the sim­u­la­tions as well as the va­ri­ety of the LHC op­er­a­tional pa­ra­me­ters, we find a gen­er­ally good agree­ment be­tween mea­sured and sim­u­lated ra­di­a­tion lev­els, typ­i­cally within a fac­tor of 2 or bet­ter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS042  
About • Received ※ 08 June 2022 — Revised ※ 23 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS043 Automated Analysis of the Prompt Radiation Levels in the CERN Accelerator Complex 736
 
  • K. Biłko, R. García Alía, J.B. Potoinepresenter
    CERN, Meyrin, Switzerland
 
  The CERN in­jec­tor com­plex is es­sen­tial in pro­vid­ing high-en­ergy beams to var­i­ous ex­per­i­ments and to the world’s largest ac­cel­er­a­tor, the Large Hadron Col­lider (LHC). Beam losses linked to its op­er­a­tion re­sult in a mixed ra­di­a­tion field which, through both cu­mu­la­tive and sin­gle-event ef­fects poses a threat to the elec­tronic equip­ment ex­posed in the tun­nel. There­fore, de­tailed knowl­edge of the ra­di­a­tion dis­tri­b­u­tion and evo­lu­tion is nec­es­sary in order to im­ple­ment ad­e­quate Ra­di­a­tion to Elec­tron­ics mit­i­ga­tion and pre­ven­tion mea­sures, re­sult­ing in an im­prove­ment of the ac­cel­er­a­tor ef­fi­ciency and avail­abil­ity. In this study, we pre­sent the au­to­mated analy­sis scheme put in place to ef­fi­ciently process and vi­su­alise the ra­di­a­tion data pro­duced by var­i­ous ra­di­a­tion mon­i­tors, dis­trib­uted at the four largest CERN ac­cel­er­a­tors, namely the Pro­ton Syn­chro­tron Booster, Pro­ton Syn­chro­tron, Super Pro­ton Syn­chro­tron, and the LHC, where a pro­ton beam is ac­cel­er­ated grad­u­ally from 160 MeV up to 7 TeV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS043  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS044 Implications and Mitigation of Radiation Effects on the CERN SPS Operation during 2021 740
 
  • Y.Q. Aguiar, A. Apollonio, K. Biłko, M. Brucoli, M. Cecchetto, S. Danzeca, R. García Alía, T. Ladzinski, G. Lerner, J.B. Potoinepresenter, A. Zimmaro
    CERN, Meyrin, Switzerland
 
  Dur­ing the Long Shut­down 2 (LS2, 2019-2020), the CERN ac­cel­er­a­tor com­plex has un­der­gone major up­grades, mainly in prepa­ra­tion for the High-Lu­mi­nos­ity (HL) LHC era, the ul­ti­mate ca­pac­ity for its physics pro­duc­tion. There­fore, sev­eral novel equip­ment and sys­tems were de­signed and de­ployed through­out the ac­cel­er­a­tor com­plex. To com­ply with the ra­di­a­tion level spec­i­fi­ca­tions and avoid ma­chine down­time due to ra­di­a­tion ef­fects, the elec­tron­ics sys­tems ex­posed to ra­di­a­tion need to fol­low Ra­di­a­tion Hard­ness As­sur­ance (RHA) method­olo­gies de­vel­oped and val­i­dated by the Ra­di­a­tion to Elec­tron­ics (R2E) pro­ject at CERN. How­ever, the es­tab­lish­ment of such pro­ce­dures is not yet fully im­ple­mented in the LHC in­jec­tor chain, and some R2E fail­ures were de­tected in the SPS dur­ing the 2021 op­er­a­tion. This work is de­voted to de­scrib­ing and analysing the R2E fail­ures and their im­pact on op­er­a­tion, in the con­text of the re­lated ra­di­a­tion lev­els and equip­ment sen­si­tiv­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS044  
About • Received ※ 07 June 2022 — Revised ※ 21 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS045 Vacuum Control System Upgrade for ALPI Accelerator 744
 
  • G. Savarese, L. Antoniazzi, D. Bortolato, A. Conte, F. Gelainpresenter, D. Marcato, C.R. Roncolato
    INFN/LNL, Legnaro (PD), Italy
 
  The vac­uum sys­tem of ALPI ac­cel­er­a­tor in­cludes about 40 pump­ing groups based on tur­bo­mol­e­c­u­lar pumps. The in­stru­men­ta­tion of the ac­cel­er­a­tors com­plex is mainly the one in­stalled in 90s, with con­se­quent main­te­nance is­sues. The con­trol and su­per­vi­sion sys­tems were de­vel­oped in the same pe­riod by an ex­ter­nal com­pany, which pro­duced cus­tom so­lu­tions for the HW and SW parts. Con­trol de­vices are based on cus­tom PLCs, while the su­per­vi­sion sys­tem is based on C and C#. The com­mu­ni­ca­tion be­tween the field and the su­per­vi­sor is com­posed of mul­ti­ple lev­els: RS-232 stan­dard is used to trans­fer con­trol pa­ra­me­ter from the field de­vices up to cus­tom mul­ti­plex­ers; RS-485 trans­mis­sion is used from the mul­ti­plex­ers to two PC servers cov­er­ing dif­fer­ent sec­tions of the in­stal­la­tion; while Eth­er­net, is used to con­nect the servers and the op­er­a­tion con­sole. Ob­so­les­cence and rigid­ity of the sys­tem, deficit of spare parts and im­pos­si­bil­ity of repa­ra­tion or mod­i­fi­ca­tion with­out ex­ter­nal sup­port, re­quired a com­plete ren­o­va­tion of the vac­uum sys­tem and rel­a­tive con­trols in the next years. This paper de­scribes the adopted strat­egy and the im­ple­men­ta­tion sta­tus.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS045  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS046 Reliability Analysis of the HL-LHC Energy Extraction System 747
 
  • M.R. Blaszkiewicz, A. Apollonio, T. Cartier-Michaud, B.I. Panev, M. Pojer, D. Wollmannpresenter
    CERN, Meyrin, Switzerland
 
  The en­ergy ex­trac­tion sys­tems for the pro­tec­tion of the new HL-LHC su­per­con­duct­ing mag­net cir­cuits are based on vac­uum break­ers. This tech­nol­ogy al­lows to sig­nif­i­cantly re­duce the switch open­ing time and in­creases the over­all sys­tem re­li­a­bil­ity with re­duced main­te­nance needs. This paper pre­sents the re­sults of de­tailed re­li­a­bil­ity stud­ies per­formed on these new en­ergy ex­trac­tion sys­tems. The study quan­ti­fies the risk of a fail­ure which pre­vents cor­rect pro­tec­tion of a mag­net cir­cuit and iden­ti­fies the most crit­i­cal com­po­nents of the sys­tem. For this, the model con­sid­ers fac­tors such as block or com­po­nent level fail­ure prob­a­bil­i­ties, dif­fer­ent main­te­nance strate­gies and re­pair pro­ce­dures. The re­li­a­bil­ity sim­u­la­tions have been per­formed with Avail­Sim4, a novel Monte Carlo code for avail­abil­ity and re­li­a­bil­ity sim­u­la­tions. The re­sults are com­pared with the sys­tem re­li­a­bil­ity re­quire­ments and pro­vides in­sights into the most crit­i­cal com­po­nents.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS046  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS047 Control and Functional Safety Systems Design for Real-Time Conditioning of RF Structures at TEX 751
 
  • S. Pioli, R. Gargana, D. Moriggipresenter
    LNF-INFN, Frascati, Italy
  • F. Cardelli, P. Ciuffetti, C. Di Giulio
    INFN/LNF, Frascati, Italy
 
  We re­port the sta­tus of the de­vel­op­ment of an High Power RF Lab­o­ra­tory in X-Band called TEX (TEst-stand for X-Band). TEX is part of the LATINO (Lab­o­ra­tory in Ad­vanced Tech­nolo­gies for IN­nO­va­tion) ini­tia­tive that is on­go­ing at the Fras­cati Na­tional Lab­o­ra­to­ries (LNF) of the Ital­ian In­sti­tute for Nu­clear Physics (INFN) that cov­ers many dif­fer­ent areas fo­cused on par­ti­cle ac­cel­er­a­tor tech­nolo­gies. TEX is a RF test fa­cil­ity based on solid-state K400 mod­u­la­tor from Scan­di­Nova with a 50MW class X-band (11.994 GHz) kly­stron tube model VKX8311A op­er­at­ing at 50 Hz. This RF source will op­er­ate as re­source for test and re­search pro­grams such as the RF break­down on RF wave­guide com­po­nents as well as high power test­ing of ac­cel­er­at­ing struc­tures for fu­ture high gra­di­ent lin­ear ac­cel­er­a­tor such as Eu­PRAXIA and CLIC. In this con­text we will pre­sent the whole EPICS con­trol sys­tem de­sign fo­cus­ing on archiv­ing, user in­ter­faces and cus­tom de­vel­op­ment made as part of the func­tional safety to de­liver real-time RF break­down de­tec­tion in­te­grated with the tim­ing sys­tem of the fa­cil­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS047  
About • Received ※ 16 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS048 Fast Trigger System for Beam Abort System in SuperKEKB 754
 
  • H. Ikeda, T. Mimashi, S. Nakamura, T. Oki, S. Sasaki
    KEK, Ibaraki, Japan
 
  In order to pro­tect the hard­ware com­po­nents of the de-tec­tor and ac­cel­er­a­tor from sud­den beam loss of high beam cur­rents, the fast beam abort sys­tem is de­vel­oped in the Su­perKEKB. The pre­vi­ous abort sys­tem was not fast enough for sud­den beam loss that caused QCS quench, and it gave a dam­age to the col­li­ma­tor and the Belle-II de­tec­tor. A fast abort sys­tem is re­quired to pre-vent­ing such dam­age. The abort sys­tem con­sists of sev-eral sen­sors that gen­er­ate in­ter­lock sig­nal (the loss moni-tor, dose in the Bell-II de­tec­tor, and the mag­net fail­ure etc.), op­ti­cal cable sys­tem to trans­fer the in­ter­lock sig­nal to cen­tral con­trol room (CCR), the abort trig­ger sig­nal gen­er­a­tion sys­tem and the abort kicker. To re­duce total time, we re­duce trans­mis­sion time from local con­trol room to CCR by chang­ing sig­nal cable route. Since the in­ter­lock sig­nal pro­duced by mag­net power sup­ply was slow, we mod­i­fied the mag­net power sup­ply. For more quick gen­er­a­tion of abort trig­ger sig­nal, we in­creased num­ber of the abort gap. By these im­prove­ments, an av­er­age abort time is re­duced from 31µsec to 25µsec. This im­prove­ment looks small, but it brought pre­vent­ing the se­ri­ous ra­di­a­tion dam­age to many hard­ware compo-nents. De­tail of the sys­tem and re­sult is pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS048  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS050 Rigorous Approach for Calculation of Radiation of a Charged Particle Bunch Exiting an Open-Ended Dielectrically Loaded Waveguide 757
 
  • S.N. Galyamin
    Saint Petersburg State University, Saint Petersburg, Russia
  • S. Baturinpresenter
    ITMO University, Saint Petersburg, Russia
 
  Funding: Work supported by Russian Science Foundation (Grant No. 18-72-10137).
Beam-dri­ven ra­di­a­tion sources based on open-ended wave­guide struc­tures with di­elec­tric fill­ing are of es­sen­tial in­ter­est due to their at­trac­tive pos­si­bil­i­ties to gen­er­ate high-power nar­row-band Cherenkov ra­di­a­tion*. An im­por­tant prob­lem here is to ef­fec­tively ex­tract the ra­di­a­tion from the wave­guide to the open space. There­fore, fur­ther de­vel­op­ment of this scheme re­quires rig­or­ous math­e­mat­i­cal ap­proach de­scrib­ing the in­ter­ac­tion of both charged par­ti­cle bunch and pro­duced ra­di­a­tion with the open end of a wave­guide. In this re­port, we pre­sent the cor­re­spond­ing an­a­lyt­i­cal ap­proach based on our re­cent paper** where dif­frac­tion of a wave­guide mode at the open end of a di­elec­tri­cally loaded wave­guide has been rig­or­ously in­ves­ti­gated.
* D. Wang et al., Rev. Sci. Instruments, Vol. 89, 093301 (2018).
** S.N. Galyamin et al., IEEE Trans. Microwave Theory Techn., Vol. 69, 2429-2438 (2021).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS050  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS052 6 MeV Novel Hybrid (Standing Wave - Traveling Wave) Photo-Cathode Electron Gun for a THz Superradiant FEL 760
 
  • A. Nause, L. Feigin, A. Friedman, A. Weinberg
    Ariel University, Ariel, Israel
  • A. Fukasawa, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • B. Spataro
    LNF-INFN, Frascati, Italy
 
  A novel 6 MeV hy­brid photo in­jec­tor was de­signed and com­mis­sioned at Ariel Uni­ver­sity in Is­rael as an on-go­ing col­lab­o­ra­tion with UCLA. This unique, new gen­er­a­tion de­sign pro­vides a rad­i­cally sim­pler ap­proach to RF feed­ing of a gun/buncher sys­tem, lead­ing to a much shorter beam via ve­loc­ity bunch­ing owed to an at­tached trav­el­ing wave sec­tion of the photo-in­jec­tor. This de­sign re­sults in bet­ter per­for­mance in beam pa­ra­me­ters, pro­vid­ing a high qual­ity elec­tron beam, with en­ergy of 6 MeV, emit­tance of less than 3 ’m, and a 150 fs pulse du­ra­tion at up to 1 nC per pulse. The Hy­brid gun is dri­ven by a SLAC XK5 Kly­stron as the high power RF source, and third har­monic of a fs level IR Laser am­pli­fier (266 nm) to ex­tract elec­trons from the Cath­ode. The unique e-gun will pro­duce a bunched elec­tron pulse to drive a THz FEL, which will op­er­ate at the su­per-ra­di­ance regime, and there­fore re­quires ex­tra­or­di­nary beam prop­er­ties. It will also be used for MeV UED ex­per­i­ments in a sep­a­rate line using a dog­leg sec­tion. Here we de­scribe the gun and pre­sents ex­per­i­men­tal re­sults from the gun and its sub-sys­tems, in­clud­ing en­ergy and charge mea­sure­ments, com­pared with the de­sign sim­u­la­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS052  
About • Received ※ 11 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)