Keyword: framework
Paper Title Other Keywords Page
MOPOST020 In-Kind Contributions: The PIP-II Project at Fermilab controls, linac, alignment, proton 98
 
  • L. Lari, L. Merminga, A.M. Rowe
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported, in part, by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under U.S. DOE Contract No. DE-AC02-07CH11359.
The Proton Improvement Plan II (PIP-II) Project is the first U.S. accelerator project that has significant contributions from international partners. A project management framework was created to fully integrate and make consistent across all partners the design, development, and delivery of In-Kind Contributions (IKC) into PIP-II. This framework consists of planning documentation, procedures, and communication and assessment processes to control schedule, risk, quality, and technical integration over the lifetime of the project. The purpose of this paper is to present the PIP-II IKC model put in place to properly integrate the IKC deliverables into the PIP-II Linac and share experience and lessons learned from its early implementation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST020  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST040 On a Framework to Analyze Single-Particle Non-Linear Beam Dynamics: Normal Form on a Critical Point lattice, operation, status, resonance 160
 
  • M. Titze
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Normal form analysis around a stable fixed point is a well-established tool in accelerator physics and has proven to be invaluable for an understanding of non-linear beam dynamics. In this work we present progress in developing a modular Python framework to analyze some of the non-linear aspects of a storage ring, by directly operating with the given Hamiltonians. Hereby we have implemented Birkhoff’s normal form and Magnus expansion. This leads to a flexible framework to perform calculations to high order and, moreover, to relax the constraint of stability to also include certain unstable fixed points in the analysis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST040  
About • Received ※ 31 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT034 Surrogate-Based Bayesian Inference of Transverse Beam Distribution for Non-Stationary Accelerator Systems controls, experiment, beam-transport, simulation 324
 
  • H. Fujii, N. Fukunishi
    RIKEN Nishina Center, Wako, Japan
  • M. Yamakita
    Tokyo Tech, Tokyo, Japan
 
  Constraints on the beam diagnostics available in real-time and time-varying beam source conditions make it difficult to provide users with high-quality beams for long periods without interrupting experiments. Although surrogate model-based inference is useful for inferring the unmeasurable, the system states can be incorrectly inferred due to manufacturing errors and neglected higher-order effects when creating the surrogate model. In this paper, we propose to adaptively assimilate the surrogate model for reconstructing the transverse beam distribution with uncertainty and underspecification using a sequential Monte Carlo from the measurements of quadrant beam loss monitors. The proposed method enables sample-efficient and training-free inference and control of the time-varying transverse beam distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT034  
About • Received ※ 19 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK059 Implementation of the Vico-Greengard-Ferrando Poisson Solver in Synergia2 simulation, space-charge, site, beam-beam-effects 600
 
  • C.S. Park
    KUS, Sejong, Republic of Korea
 
  Computation of space charge fields in accelerator simulations is one of the most challenging tasks. The algorithm proposed by Hockney and Eastwood is the fastest method for numerically solving Poisson equations with open boundaries and has been implemented in various accelerator simulation codes. Recently, Vico-Greengard-Ferrando proposed a new hybrid fast algorithm for computing volume potentials. The new algorithm is promising higher accuracy and faster error convergence than that of Hockney-Eastwood. This study presents the implementation of the Vico-Greengard-Ferrando solver in Synergia and shows a comparison of results with these Poisson solvers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK059  
About • Received ※ 10 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS034 Material Normal Energy Distribution for Field Emission Analyses From Monocrystalline Surfaces electron, vacuum, lattice, cathode 713
 
  • J.I. Mann, Y. Li, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • T. Arias, J.K. Nangoi
    Cornell University, Ithaca, New York, USA
 
  Funding: National Science Foundation Grant No. PHY-1549132
Electron field emission is a complicated phenomenon which is sensitive not only to the particular material under illumination but also to the specific crystalline orientation of the surface. Summarizing the ability for a crystal to emit in a particular direction would be of great use when searching for good field emitters. In this paper we propose a material normal energy distribution which describes the ability of the bound electrons to tunnel under an intense electric field. This framework breaks a computationally expensive 3-D system down to a source distribution representation applicable for more efficient 1-D models. We use the Fowler-Nordheim framework to study the yield and MTE (mean transverse energy) from sources including gold, copper, and tungsten in both monocrystalline and polycrystalline forms. We find an increase in effective work function for field emission in the (111) direction for gold and copper associated with the Bragg plane intersections of the Fermi surface.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS034  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS047 Control and Functional Safety Systems Design for Real-Time Conditioning of RF Structures at TEX controls, EPICS, interface, vacuum 751
 
  • S. Pioli, R. Gargana, D. Moriggi
    LNF-INFN, Frascati, Italy
  • F. Cardelli, P. Ciuffetti, C. Di Giulio
    INFN/LNF, Frascati, Italy
 
  We report the status of the development of an High Power RF Laboratory in X-Band called TEX (TEst-stand for X-Band). TEX is part of the LATINO (Laboratory in Advanced Technologies for INnOvation) initiative that is ongoing at the Frascati National Laboratories (LNF) of the Italian Institute for Nuclear Physics (INFN) that covers many different areas focused on particle accelerator technologies. TEX is a RF test facility based on solid-state K400 modulator from ScandiNova with a 50MW class X-band (11.994 GHz) klystron tube model VKX8311A operating at 50 Hz. This RF source will operate as resource for test and research programs such as the RF breakdown on RF waveguide components as well as high power testing of accelerating structures for future high gradient linear accelerator such as EuPRAXIA and CLIC. In this context we will present the whole EPICS control system design focusing on archiving, user interfaces and custom development made as part of the functional safety to deliver real-time RF breakdown detection integrated with the timing system of the facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS047  
About • Received ※ 16 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST033 A Python Framework for High-level Applications in Accelerator Operations controls, operation, EPICS, interface 929
 
  • J.T.M Chriń, V. Erçağlar, T. Schietinger
    PSI, Villigen PSI, Switzerland
 
  A Python graphical framework providing reusable components to facilitate the development of accelerator applications, that meet the basic requirements of experts and operators alike, is presented. Such a collective approach serves to bridge the gap between the expert developer and the operational team, resulting in applications that are inherently cohesive, durable and easily navigable. The operational advantages and underlying principles are exemplified in a reference application that provides executable examples of customary practices, and further highlights several composite and control system-enabled widgets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST033  
About • Received ※ 16 May 2022 — Revised ※ 19 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST058 Badger: The Missing Optimizer in ACR interface, controls, GUI, operation 999
 
  • Z. Zhang, A.L. Edelen, J.R. Garrahan, C.E. Mayes, S.A. Miskovich, D.F. Ratner, R.J. Roussel, J. Shtalenkova
    SLAC, Menlo Park, California, USA
  • M. Böse, S. Tomin
    DESY, Hamburg, Germany
  • Y. Hidaka, G.M. Wang
    BNL, Upton, New York, USA
 
  Badger is an optimizer specifically designed for Accelerator Control Room (ACR). It’s the spiritual successor of Ocelot optimizer. Badger abstracts an optimization run as an optimization algorithm interacts with an environment, by following some pre-defined rules. The environment is controlled by the algorithm and tunes/observes the control system/machine through an interface, while the users control/monitor the optimization flow through a graphical user interface (GUI) or a command line interface (CLI). This paper would introduce the design principles and applications of Badger.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST058  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT060 EPICS-Based Telegram Integration for Control and Alarm Handling at TEX Facility EPICS, controls, status, operation 1145
 
  • S. Pioli, D. Moriggi
    LNF-INFN, Frascati, Italy
  • F. Cardelli, P. Ciuffetti, C. Di Giulio
    INFN/LNF, Frascati, Italy
 
  We report the status of the development of an High Power RF Laboratory in X-Band called TEX (TEst-stand for X-Band). TEX is part of the LATINO (Laboratory in Advanced Technologies for INnOvation) initiative that is ongoing at the Frascati National Laboratories (LNF) of the Italian Institute for Nuclear Physics (INFN) that covers many different areas focused on particle accelerator technologies. TEX is a RF test facility based on solid-state K400 modulator from ScandiNova with a 50 MW class X-band (11.994 GHz) klystron tube model VKX8311A operating at 50 Hz. TeXbot is a Telegram bot used to notify in asynchronous way event at TEX. The application has been realized making use of framework such as telepot and pysmlib, to interface with Telegram and with EPICS environment respectively. The bot make able the user to subscribe to multiple topic in order to be automatically notified in case of different set up of the machine or when an interlock occurs on a single component. Furthermore the user can request detailed information about subsystem of the accelerator by simply make use of special commands and token in Telegram app.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT060  
About • Received ※ 16 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS016 A Pipeline for Orchestrating Machine Learning and Controls Applications simulation, software, controls, operation 1439
 
  • I.V. Agapov, M. Böse, L. Malina
    DESY, Hamburg, Germany
 
  Machine learning and artificial intelligence are becoming widespread paradigms in control of complex processes. Operation of accelerator facilities is not an exception, with a number of advances having happened over the last years. In the domain of intelligent control of accelerator facilities, the research has mostly been focused on feasibility demonstration of ML-based agents, or application of ML-based agents to a well-defined problem such as parameter tuning. The main challenge on the way to a more holistic AI-based operation, in our opinion, is of engineering nature and is related to the need of significant reduction of the amount of human intervention. The areas where such intervention is still significant are: training and tuning of ML models; scheduling and orchestrating of multiple intelligent agents; data stream handling; configuration management; and software testing and verification requiring advanced simulation environment. We have developed a software framework which attempts to address all these issues. The design and implementation of this system will be presented, together with application examples for the PETRA III storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS016  
About • Received ※ 09 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS055 A Modernized Architecture for the Post Mortem System at CERN database, operation, controls, injection 1557
 
  • J.F. Barth, F. Bogyai, J.C. Garnier, M.L. Majewski, T. Martins Ribeiro, A. Mnich, M.P. Pocwierz, R.S. Selvek, R. Simpson, A. Stanisz, D. Wollmann, M. Zerlauth
    CERN, Meyrin, Switzerland
 
  The control system of the accelerators at CERN stores and analyses more than 200 million dumps of high resolution data recordings every year in the Post Mortem (PM) system. A continuous increase in the complexity of the Large Hadron Collider’s (LHC) systems and the desire to collect more accurate data requires continuous improvement of the PM system. Recently, the PM system has been modernized ahead of the third operational Run of the LHC. The upgraded system implements well known data engineering principles such as horizontal scaling, stateless services and readiness for extensions. This paper recalls the purpose of the PM service and its current use cases. It presents its modernized architecture, reviews the current performance and limitations of the system, and draws perspectives for the next steps in its evolution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS055  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST016 Development of Collimation Simulations for the FCC-ee collimation, simulation, radiation, coupling 1718
 
  • A. Abramov, R. Bruce, M. Hofer, G. Iadarola, S. Redaelli
    CERN, Meyrin, Switzerland
  • F.S. Carlier, T. Pieloni, M. Rakic
    EPFL, Lausanne, Switzerland
  • L.J. Nevay
    JAI, Egham, Surrey, United Kingdom
  • S.M. White
    ESRF, Grenoble, France
 
  A collimation system is under study for the FCC-ee to protect the machine from the multi-MJ electron and positron beams and limit the backgrounds to the detectors. One of the key aspects of the collimation system design is the setup of simulation studies combining particle tracking and scattering in the collimators. The tracking must include effects important for electron beam single-particle dynamics in the FCC-ee, such as synchrotron radiation. For collimation, an aperture model and particle-matter interactions for electrons are required. There are currently no established simulation frameworks that include all the required features. The latest developments of an integrated framework for multi-turn collimation studies in the FCC-ee are presented. The framework is based on an interface between tracking codes, pyAT and Xtrack, and a particle-matter interaction code, BDSIM, based on Geant4. Promising alternative simulation codes and frameworks are also discussed. The challenges are outlined, and the first results are presented, including preliminary loss maps for the FCC-ee.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST016  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)