
A PYTHON FRAMEWORK
FOR HIGH-LEVEL APPLICATIONS IN ACCELERATOR OPERATIONS

J. Chrin, V. Erçağlar, T. Schietinger, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract
A Python graphical framework providing reusable com-

ponents to facilitate the development of accelerator appli-
cations, that meet the basic requirements of experts and
operators alike, is presented. Such a collective approach
serves to bridge the gap between the expert developer and
the operational team, resulting in applications that are in-
herently cohesive, durable and easily navigable. The opera-
tional advantages and underlying principles are exemplified
in a reference application that provides executable examples
of customary practices, and further highlights a number of
composite and control system-enabled widgets.

PERSPECTIVE AND MOTIVATION
The development of high-level applications crosses the

domain of several groups, each possessing a distinctive skill
set and ambition. Typically the ‘expert’ application is devel-
oped by the scientist, engineer, whose primary interest is in
providing an interface that details the hardware capabilities
of the system. The ‘operator’ application on the other hand
may require only a condensed view and one that offers au-
tomated procedures geared towards the everyday operation
of the accelerator. Other, beam dynamics, applications will
undertake specific measurements crucial to the optimization
of the accelerator, and may further require interaction with
accelerator models, message reporting capability, and the
means to store and retrieve data resulting from their anal-
yses. Many such measurements and procedures are first
deployed by the expert in the commissioning phase of the
accelerator before ultimately being delegated to machine
operators once routine operation is established. The diver-
sity of developers, however, inevitably leads to a variety of
frameworks and appearances, with some duplication in that
similar functionalities are instigated in different manners
and with a non-uniform behaviour. These subtle details of
cross-domain application development are acknowledged to
add to the tasks and challenges faced by the operator [1, 2].

This inadvertent disparity between applications, however,
can be alleviated by supplying a controlled, coordinated, and
configurable graphical interface wherein common function-
ality is provided through predetermined inputs with well
defined responses. Applications then become inherently
homogeneous, and developers are further relieved of imple-
menting peripheral tasks, releasing time to prioritize their
particular area of interest.

In the following, a Python graphical framework is de-
scribed that provides a base class that can be inherited by the
application developer, and adapted to specific needs. The
focus is on the components and methodology that constitute
the framework, rather than any specific application that is

built upon the infrastructure, as applied within the context
of SwissFEL and the Swiss Light Source (SLS).

A PYTHON GRAPHICAL FRAMEWORK
The Python programming is presently enjoying a high

profile within the accelerator community being the preferred
language for application development at facilities of various
size [3, 4]. While scripting is regarded as gratifyingly intu-
itive and powerful, our applications are inherently graphical
and this in itself adds a new level of complexity. To this
end, PyQt, a Python graphical user interface (GUI) module
that connects to the Qt C++ framework [5, 6], is the pre-
vailing choice. Significantly, in this work, Qt modules are
imported through the QtPy abstraction layer [7] allowing
our framework to be used effortlessly across Qt versions.

The Qt library provides much functionality, with numer-
ous classes. Its specific application domain of windows, wid-
gets, layouts, colours, shapes, and more, however, presents
the developer with expansive possibilities to interrogate and
discern before converging on a finely-tuned appearance. Fur-
thermore, and rather critically, any complex physics analysis,
or any other resource intensive operation having a long run-
ning time, needs to be delegated to a separate thread. Here,
Qt’s dedicated thread support is a fitting option given that
our applications interact with other components of the Qt
library. In this way, the main thread remains responsive at all
times, widgets with read backs continue to be updated, and
user interaction, where permitted, is not interrupted. Such
considerations are a prerequisite in gaining a satisfactory
user experience. Once these challenges are overcome, the
programmed solutions may be presented to the developer in
a reusable form.

Apps4Ops: A Characteristic Style
The GUI implementation class follows Qt’s customary

‘main-window-style’ approach that offers predefined options
for user input in the form of a menu bar, toolbar, status
bar, a central widget, and dock windows. The adoption of
such a ready-made, integrated approach, at the outset, is an
important factor in achieving a polished, intelligible, and
navigable user interface. The static visualization of data
is accomplished through the comprehensive Matplotlib li-
brary [8, 9]. For the display of continuous, real-time data,
however, the PyQtGraph [10] library, based on Qt’s Graph-
icsView framework, is preferred for its speedier response
time. The principle components that constitute the frame-
work, and other practicalities that play a part in achieving
the desired homogeneity among applications, coupled with
an optimized user experience, are elaborated.

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST033

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

TUPOST033

929

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Control System-enabled Widgets The low-level con-
trol system is built on the EPICS (Experimental Physics
and Industrial Control System) framework [11], which com-
prises an extensive set of software tools tailored to the needs
of particle accelerators and large-scale experiments. Inter-
action with the EPICS-based control system is established
through a proven C++ abstraction layer [12–14], for which
high-performance bindings to Python have been provided
using the Cython technology [15]. Several control system-
enabled Qt widgets, and composites, have been made avail-
able. These connect to a gateway module that handles their
connectivity management, propagates updates, and ensures
their display conforms to the recognized style.

Configuration The provision of an application frame-
work that spans across different accelerators requires a multi-
faceted configuration mechanism that allows the generic, the
accelerator-specific, and the application’s user behaviour to
be configured via a hierarchy of configuration files. Their
tasks may be numerous, hence only certain representative
usage is outlined here.

At the core level, a Qt style sheet file defines the appear-
ance of GUI elements, including fonts, sizes, and colour
schemes, in accordance with the stipulated style guide. In
addition, a configuration file storing simple data structures
in JSON (JavaScript Object Notation) format [16], provides
information such as default menu options, and the destina-
tion of various output files. The second level configuration
file provide handles to several accelerator-specific parame-
ters, e.g., exposing the EPICS channels that constitute the
accelerator-specific header widget. The application’s user
configuration file may be as extensive as the user requires.
It can also be used to enact a number of predefined widgets
and associated tasks, e.g., checkboxes that control simulated
runs, debug options, etc., and also to formulate further GUI
components that provide input parameters that dynamically
feed into the application and its analysis tasks. A destination
subpanel for analysis results, typically in graphical form, can
also be entered.

The configuration files, and other small resources files
such as icons and help pages, are registered and safe guarded
in an accelerator-dependent resources file from which a
Python module is generated. The resource module is then
imported by the application, from where the files can be
accessed directly. No assumptions need then be made about
the location of the files, or the application’s working direc-
tory; with help files also incorporated into the resources
module, no external web help pages need be summoned.
The default generic and accelerator level configurations can
also be replaced by user-supplied files through command
line interface flags.

Initialization Applications are expected to initialize as
speedily as is feasible. Faster times can be achieved by
assigning any time-intensive ‘loading’ method to a single-
shot timer with zero-timeout; the loading method is then
executed when the event queue next allows, i.e., once the
main window initialization is complete. Another helpful

approach is to inform the application at startup of its associ-
ated channels. The underlying EPICS client library allows
connections to be established in unison with a single call.
Having connections established in advance of widget cre-
ation allows pertinent information concerning the channels
to be readily available to any associated widget and allow
its configuration to be determined dynamically and spon-
taneously. These data are further stored locally and can
be recalled in the event of a channel being unavailable at
start-up time. The widget is automatically reconfigured once
a connection is established. Likewise, other application’s
settings, such as the window dimensions and positions, will
have been previously optimized, remembered locally, and
recalled on startup, providing consistency between sessions.
Nevertheless, despite these optimizations, where complex
applications may still take a few seconds to startup, which
is invariably the case, a so-called ‘splash screen’ is shown
ahead of the forthcoming main window display to reassure
the user that the application is indeed loading. A progress
bar on the splash screen further informs the user of the time
remaining for the application to initialize.

Finalization Best practice for a tidy application exit
dictates that any pending actions are first completed or at
least interrupted gracefully. This may entail checking if
any analysis threads are still running and that control sys-
tem parameters are restored to their pre-measurement values.
Explicitly releasing application resources, such as those man-
aging EPICS connectivity, reassures the developer of sound
memory management in the underlying libraries.

Menu Bar and Toolbar Menus and toolbars furnish a
GUI with a convenient graphical presentation of user com-
mands that perform specific tasks. Placements in the main
window’s menu bar are grouped into submenus consisting
of a list of logically related pull-down items. A dynamically
created menu bar is provided for operations on files, as ne-
cessitated for the display of recently used files, while other
static menu bars are provided for performing peripheral tasks
such as:

• initiating output actions, e.g., saving data to HDF5
files [17], reporting to the electronic logbook [18],

• capturing images and screenshots,
• connectivity to printers,
• interrogating the standard output file, clearing entries

in the message log window,
• displaying procedural help pages and information that

discloses ‘behind-the-scenes’ details, such as software
versions and the application responsible,

• enabling a tidy exit.
Actions to application-specific items can be customized

by the user by resetting the base class implementations. The
application menu items are selected by the application’s user
configuration file.

The toolbar, located immediately below the horizontal
menu bar, is populated with icons that provide quick access
to the most commonly used commands.

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST033

TUPOST033C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

930

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools



Central Widget An accelerator-specific header widget
takes ownership of the top area of the central widget. It
displays the most pertinent information related to the cur-
rent status of the machine. The remainder of the central
widget is partitioned into dedicated subpanels that serve as
destination locations for operator/expert input parameters to
measurement procedures, the visualization of results, and
the display of log messages. The partition of the central
widget can be configured to the application’s needs through
the application-specific configuration file.

Message Reporting The use of a carefully considered
message reporting interface ensures a consistent set of data
is delivered to the log window. Mandatory information in-
cludes the origin and timestamp of the message, coupled
with a severity level. The data are supplemented by a number
of optional fields that are filled at the discretion of the user.
In the event of a fatal condition that prevents the application
from continuing, the provision of the developer to supply a
meaningful and helpful message, that may also propose a
solution, can hasten the return to normal operation.

Analysis Module An example analysis module which
inherits Qt’s thread class demonstrates the proposed analysis
procedures. Input data from the operator or expert panels
are automatically propagated to the analysis class. These,
together with the analyzed data, are encapsulated into dictio-
naries for subsequent display and storage. Stored data can be
recalled into the application and reanalysed, thereby demon-
strating the seamless integration of logged and real-time
accelerator data into the same framework. Interthread com-
munication, as required for progress updates and message
reporting, is accomplished through Qt’s distinctive signal
and slots mechanism.

Deployment and Experience
A generic, skeleton application exemplifying features of

the graphical framework acts as a reference for developers.
An application that makes typical use of the infrastructure
is shown in Fig. 1. The emphasis has been on creating fas-
tidious modules to help ensure excellent operational ability.
Even the simplest of push buttons must execute its task im-
peccably and be equipped to act with integrity in the event
of an anomaly. The adoption of the framework ensures that
applications have recognizable buttons and icons that lead to
predictable actions, and accelerates the creation of user in-
terfaces by relieving developers of implementing peripheral
tasks, thereby releasing time to concentrate on their particu-
lar area of interest. The involvement of both graduate and
undergraduate students in research and creative activities
is also an integral part of our organization; their use of the
framework increases productivity and readies their work for
operational use. It further promotes sustainability in that
only a single framework need be maintained and extended
for basic application needs.

The deployment of the framework has proven to be an
iterative process as essential feedback is returned from a

Figure 1: An example of an application using the ‘main-
window-style’ framework. It comprises a menu bar, a tool-
bar, an accelerator-specific header widget, customized epics-
enabled widgets, a status bar, and partitions for operator and
expert inputs and procedures, the visualization of data, and
the display of log messages.

focus group of users. The sharing of their experience, the
problems encountered, and subsequent proposals, feature in
a collective decision on the evolution of an application. The
collaborative approach brings flexibility into our section,
promotes inter-department activities, and equally broadens
our own horizon.

CONCLUDING REMARKS
Several common, peripheral requirements for high-level

applications have been identified and incorporated into a
dedicated graphical framework that serves as a foundation
for the development of applications that are collectively co-
hesive, functional, durable, and navigable. The Apps4Ops
software architecture has encompassed several renewed ef-
forts as our understanding of operator requirements, and
the capabilities of the underlying software, has advanced
with experience. It has now been applied to a number of
beam dynamics applications developed by accelerator physi-
cists1 achieving a level of homogeneity and consistency that
is shaping the evolution of high-level applications for op-
erations at the existing SwissFEL and the upcoming SLS
2.0 [19, 20].

ACKNOWLEDGEMENTS
We are grateful to our many colleagues in the Accelerator

Operation and Development Dept. of the Large Research
Facilities (GFA) Division, for their valuable feedback, espe-
cially concerning enhancements to the user experience. The
Python environment within GFA is provided by the Elec-
tronics and Control Systems Dept. One of us (JC) thanks
Ivan Sinkarenko, CERN, for fruitful Pythonic discussions.

1 “You Are The Music... We’re Just The Band”, Trapeze, 1972

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST033

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools

TUPOST033

931

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



REFERENCES
[1] D. Jacquet, “Breaking the wall between operational and ex-

pert tools”, in Proc. 7th Evian Workshop on LHC Beam Op-
eration, Evian Les Bains, France, Dec. 2016, pp. 157–160.
https://cds.cern.ch/record/2293679

[2] S. Deghaye, “How to improve interactions with the control
system”, in Proc. 7 th Evian Workshop on LHC Beam Opera-
tion, Evian Les Bains, France, Dec. 2016, pp. 161–166.
https://cds.cern.ch/record/2293526

[3] T. Zhang, J. H. Chen, B. Liu, and D. Wang, “Python-based
high-level applications development for Shanghai soft X-ray
free-electron laser”, in Proc. 12th Int. Computational Accel-
erator Physics Conf. (ICAP’15), Shanghai, China, Oct. 2015,
pp. 23–25. doi:10.18429/JACoW-ICAP2015-MODWC4

[4] P. Elson, C. Baldi, and I. Sinkarenko, “Introducing Python as
a supported language for accelerator controls at CERN”, in
Proc. 18th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’21), Shanghai, China,
Oct. 2021, pp. 236–241.
doi:10.18429/JACoW-ICALEPCS2021-MOPV040

[5] Qt, https://www.qt.io
[6] PyQt,
https://riverbankcomputing.com/software/pyqt

[7] QtPy, https://pypi.org/project/QtPy
[8] J. D. Hunter, “Matplotlib: A 2D graphics environment”, Com-

puting in Science and Engineering, vol. 9, no. 3, pp. 90–95,
2007. doi:10.1109/MCSE.2007.55

[9] Matplotlib, https://matplotlib.org
[10] PyQtGraph, https://www.pyqtgraph.org

[11] EPICS, https://epics-controls.org

[12] CAFE, http://cafe.psi.ch

[13] J. Chrin, “An update on CAFE, a C++ Channel Access client
library and its scripting language extensions”, in Proc. 15th
Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’15), Melbourne, Australia,
Oct. 2015, pp. 1013–1016.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF132

[14] J. Chrin, M. Aiba, and J. Snuverink, “A Channel Access soft-
ware platform for beam dynamics applications in scripting
languages”, J. Phys.: Conf. Ser., vol. 1350, p. 012155.
doi:10.1088/1742-6596/1350/1/012155

[15] J. Chrin, “A Cython interface to EPICS Channel Access for
high-level Python applications”, in Proc. 11th Int. Workshop
on Personal Computers and Particle Accelerator Controls
(PCaPAC’16), Campinas, Brazil, Oct. 2016, pp. 21–24.
doi:10.18429/JACoW-PCAPAC2016-WEUIPLCO04

[16] JSON, https://www.json.org

[17] HDF®, https://www.hdfgroup.org

[18] ELOG, https://elog.psi.ch/elog

[19] A. Streun et al., “SLS-2 - the upgrade of the Swiss Light
Source”, J. Synchrotron Radiat., vol. 25, pp. 631–641, 2018.
doi:10.1107/S1600577518002722

[20] A. Streun, “SLS 2.0, the upgrade of the Swiss Light Source”,
in Proc. 13th Int. Particle Accelerator Conf. (IPAC’22),
Bangkok, Thailand, Jun. 2022, paper TUPOST032, this con-
ference.

T
hi

si
sa

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

is
he

d
w

ith
IO

P

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOST033

TUPOST033C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

932

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33: Online Modeling and Software Tools


