MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T18: Radiation Monitoring and Safety
Paper Title Page
MOPOMS039 Study of Material Choice in Beam Dumps for Energetic Electron Beams 721
 
  • D. Zhu, R.T. Dowd, Y.E. Tan
    AS - ANSTO, Clayton, Australia
 
  Lead is typ­i­cally used as the ini­tial tar­get in a de­sign for beam dumps for high en­ergy elec­tron beams (>20 MeV). Elec­tron beams with en­er­gies above 20 MeV are usu­ally built within con­crete bunkers and there­fore the de­sign of any beam dump would just be a lead block (very cost ef­fec­tive) as close to the elec­tron source as pos­si­ble, after a vac­uum flange of some sort. In a study of a hy­po­thet­i­cal 100 MeV elec­tron beam in­side a con­crete bunker with an ex­tremely low dose rate con­straint out­side the bunker, the thick­ness of lead re­quired would have been too re­stric­tive for a com­pact de­sign. In this study we in­ves­ti­gate the po­ten­tial ben­e­fits of de­signs that in­corpo-rate low Z ma­te­ri­als like graphite as the pri­mary tar­get ma­te­r­ial in vac­uum fol­lowed by pro­gres­sively higher Z ma­te­ri­als up to lead. The re­sults show the more dif­fuse elas­tic scat­ter­ing from the pri­mary tar­get re­duces the back scat­tered pho­tons and re­duces the over­all neu­tron gen­era-tion. The ef­fect was a more com­pact de­sign for the beam dump to meet the same dose rate con­straint.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS039  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS040 Radiation Shielding Design for the X-Band Laboratory for Radio-Frequency Test Facility - X-Lab - at the University of Melbourne 724
 
  • M. Volpi, R.P. Rassool, S.L. Sheehy, G. Taylor, S.D. Williams
    The University of Melbourne, Melbourne, Victoria, Australia
  • D. Banon-Caballero
    IFIC, Valencia, Spain
  • M. Boronat, N. Catalán Lasheras
    CERN, Meyrin, Switzerland
  • R.T. Dowd
    AS - ANSTO, Clayton, Australia
  • S.L. Sheehy
    ANSTO, Kirrawee DC New South Wales, Australia
 
  Here we re­port ra­di­a­tion dose es­ti­mates cal­cu­lated for the X-band Lab­o­ra­tory for Ac­cel­er­a­tors and Beams (X-LAB) under con­struc­tion at the Uni­ver­sity of Mel­bourne (UoM). The lab will host a CERN X-band test stand con­tain­ing two 12 GHz 6 MW kly­stron am­pli­fiers. By power com­bi­na­tion through hy­brid cou­plers and the use of pulse com­pres­sors, up to 50 MW of peak power can be sent to any of to ei­ther of the two test slots at pulse rep­e­ti­tion rates up to 400 Hz. The test stand is ded­i­cated to RF con­di­tion­ing and test­ing CLIC’s high gra­di­ent ac­cel­er­at­ing struc­tures be­yond 100 MV/m. This paper also gives a brief overview of the gen­eral prin­ci­ples of ra­di­a­tion pro­tec­tion leg­is­la­tion; ex­plains ra­di­o­log­i­cal quan­ti­ties and units, in­clud­ing some basic facts about ra­dioac­tiv­ity and the bi­o­log­i­cal ef­fects of ra­di­a­tion; and gives an overview of the clas­si­fi­ca­tion of ra­di­o­log­i­cal areas at X-LAB, ra­di­a­tion fields at high-en­ergy ac­cel­er­a­tors, and the ra­di­a­tion mon­i­tor­ing sys­tem used at X-LAB. The bunker de­sign to achieve a dose rate less than an­nual dose limit of 1 mSv is also shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS040  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS041 Concrete Shielding Activation for Proton Therapy Systems Using BDSIM and FISPACT-II 728
SUSPMF096   use link to see paper's listing under its alternate paper code  
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
  • F. Stichelbaut
    IBA, Louvain-la-Neuve, Belgium
 
  Pro­ton ther­apy sys­tems are used world­wide for pa­tient treat­ment and fun­da­men­tal re­search. The gen­er­a­tion of sec­ondary par­ti­cles when the beam in­ter­acts with the beam­line el­e­ments is a well-known issue. In par­tic­u­lar, the en­ergy de­grader is the dom­i­nant source of sec­ondary ra­di­a­tion. This poses new chal­lenges for the con­crete shield­ing of com­pact sys­tems and beam­line el­e­ments ac­ti­va­tion com­pu­ta­tion. We use a novel method­ol­ogy to seam­lessly sim­u­late all the processes rel­e­vant to the ac­ti­va­tion eval­u­a­tion. A re­al­is­tic model of the sys­tem is de­vel­oped using Beam De­liv­ery Sim­u­la­tion (BDSIM), a Geant4-based par­ti­cle track­ing code that al­lows a sin­gle model to sim­u­late pri­mary and sec­ondary par­ti­cle track­ing and all par­ti­cle-mat­ter in­ter­ac­tions. The sec­ondary par­ti­cle fluxes ex­tracted from the sim­u­la­tions are pro­vided as input to FIS­PACT-II to com­pute the ac­ti­va­tion by solv­ing the rate equa­tions. This ap­proach is ap­plied to the Ion Beam Ap­pli­ca­tions (IBA) Pro­teus®ONE (P1) sys­tem and the shield­ing of the pro­ton ther­apy re­search cen­tre of Charleroi, Bel­gium. Pro­ton loss dis­tri­b­u­tions are used to model the pro­duc­tion of sec­ondary neu­trals in­side the ac­cel­er­a­tor struc­ture. Two mod­els for the dis­tri­b­u­tion of pro­ton losses are com­pared for the com­pu­ta­tion of the clear­ance index at spe­cific lo­ca­tions of the de­sign. Re­sults show that the vari­a­tion in the ac­cel­er­a­tor loss mod­els can be char­ac­terised as a sys­tem­atic error.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS041  
About • Received ※ 19 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS042 Comparison Between Run 2 TID Measurements and FLUKA Simulations in the CERN LHC Tunnel of the Atlas Insertion Region 732
 
  • D. Prelipcean, K. Biłko, F. Cerutti, A. Ciccotelli, D. Di Francesca, R. García Alía, B. Humann, G. Lerner, D. Ricci, M. Sabaté-Gilarte
    CERN, Meyrin, Switzerland
  • B. Humann
    TU Vienna, Wien, Austria
 
  In this paper we pre­sent a sys­tem­atic bench­mark be­tween the sim­u­lated and the mea­sured data for the ra­di­a­tion mon­i­tors use­ful for Ra­di­a­tion to Elec­tron­ics (R2E) stud­ies at the Large Hadron Col­lider (LHC) at CERN. For this pur­pose, the ra­di­a­tion lev­els in the main LHC tun­nel on the right side of the In­ter­ac­tion Point 1 (ATLAS de­tec­tor) are sim­u­lated using the FLUKA Monte Carlo code and com­pared against Total Ion­is­ing Dose (TID) mea­sure­ments per­formed with the Beam Loss Mon­i­tor­ing (BLM) sys­tem, and 180 m of Dis­trib­uted Op­ti­cal Fibre Ra­di­a­tion Sen­sor (DOFRS). Con­sid­er­ing the com­plex­ity and the scale of the sim­u­la­tions as well as the va­ri­ety of the LHC op­er­a­tional pa­ra­me­ters, we find a gen­er­ally good agree­ment be­tween mea­sured and sim­u­lated ra­di­a­tion lev­els, typ­i­cally within a fac­tor of 2 or bet­ter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS042  
About • Received ※ 08 June 2022 — Revised ※ 23 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS043 Automated Analysis of the Prompt Radiation Levels in the CERN Accelerator Complex 736
 
  • K. Biłko, R. García Alía, J.B. Potoine
    CERN, Meyrin, Switzerland
 
  The CERN in­jec­tor com­plex is es­sen­tial in pro­vid­ing high-en­ergy beams to var­i­ous ex­per­i­ments and to the world’s largest ac­cel­er­a­tor, the Large Hadron Col­lider (LHC). Beam losses linked to its op­er­a­tion re­sult in a mixed ra­di­a­tion field which, through both cu­mu­la­tive and sin­gle-event ef­fects poses a threat to the elec­tronic equip­ment ex­posed in the tun­nel. There­fore, de­tailed knowl­edge of the ra­di­a­tion dis­tri­b­u­tion and evo­lu­tion is nec­es­sary in order to im­ple­ment ad­e­quate Ra­di­a­tion to Elec­tron­ics mit­i­ga­tion and pre­ven­tion mea­sures, re­sult­ing in an im­prove­ment of the ac­cel­er­a­tor ef­fi­ciency and avail­abil­ity. In this study, we pre­sent the au­to­mated analy­sis scheme put in place to ef­fi­ciently process and vi­su­alise the ra­di­a­tion data pro­duced by var­i­ous ra­di­a­tion mon­i­tors, dis­trib­uted at the four largest CERN ac­cel­er­a­tors, namely the Pro­ton Syn­chro­tron Booster, Pro­ton Syn­chro­tron, Super Pro­ton Syn­chro­tron, and the LHC, where a pro­ton beam is ac­cel­er­ated grad­u­ally from 160 MeV up to 7 TeV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS043  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS044 Implications and Mitigation of Radiation Effects on the CERN SPS Operation during 2021 740
 
  • Y.Q. Aguiar, A. Apollonio, K. Biłko, M. Brucoli, M. Cecchetto, S. Danzeca, R. García Alía, T. Ladzinski, G. Lerner, J.B. Potoine, A. Zimmaro
    CERN, Meyrin, Switzerland
 
  Dur­ing the Long Shut­down 2 (LS2, 2019-2020), the CERN ac­cel­er­a­tor com­plex has un­der­gone major up­grades, mainly in prepa­ra­tion for the High-Lu­mi­nos­ity (HL) LHC era, the ul­ti­mate ca­pac­ity for its physics pro­duc­tion. There­fore, sev­eral novel equip­ment and sys­tems were de­signed and de­ployed through­out the ac­cel­er­a­tor com­plex. To com­ply with the ra­di­a­tion level spec­i­fi­ca­tions and avoid ma­chine down­time due to ra­di­a­tion ef­fects, the elec­tron­ics sys­tems ex­posed to ra­di­a­tion need to fol­low Ra­di­a­tion Hard­ness As­sur­ance (RHA) method­olo­gies de­vel­oped and val­i­dated by the Ra­di­a­tion to Elec­tron­ics (R2E) pro­ject at CERN. How­ever, the es­tab­lish­ment of such pro­ce­dures is not yet fully im­ple­mented in the LHC in­jec­tor chain, and some R2E fail­ures were de­tected in the SPS dur­ing the 2021 op­er­a­tion. This work is de­voted to de­scrib­ing and analysing the R2E fail­ures and their im­pact on op­er­a­tion, in the con­text of the re­lated ra­di­a­tion lev­els and equip­ment sen­si­tiv­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS044  
About • Received ※ 07 June 2022 — Revised ※ 21 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOXGD2 Wireless IoT in Particle Accelerators: A Proof of Concept with the IoT Radiation Monitor at CERN 772
 
  • S. Danzeca, A.J. Cass, A. Masi, R. Sierra, A. Zimmaro
    CERN, Meyrin, Switzerland
 
  The In­ter­net of Things (IoT) is an ecosys­tem of web-en­abled "smart de­vices" that in­te­grates sen­sors and com­mu­ni­ca­tion hard­ware to col­lect, send and act on data ac­quired from the sur­round­ing en­vi­ron­ment. Use of the IoT in par­ti­cle ac­cel­er­a­tors is not new, with ac­cel­er­a­tor sys­tems long hav­ing been con­nected to the net­work to re­trieve, send and analyse data. What has been miss­ing is the IoT con­cept of "smart de­vices" and above all wire­less con­nec­tiv­ity. We re­port here on the ad­van­tages of using a par­tic­u­lar IoT tech­nol­ogy, LoRa, for the de­ploy­ment of wire­less ra­di­a­tion mon­i­tors within the CERN par­ti­cle ac­cel­er­a­tor com­plex. IoT Ra­di­a­tion Mon­i­tors have been de­vel­oped as a re­sult of grow­ing de­mand for ra­di­a­tion mea­sure­ments where stan­dard in­fra­struc­ture is not avail­able. As a ra­di­a­tion-tol­er­ant de­vice, the IoT Ra­di­a­tion Mon­i­tor is a pow­er­ful "eye" for ob­serv­ing the real-time ra­di­a­tion lev­els in the CERN ac­cel­er­a­tors. We de­scribe here the tech­nolo­gies used for the pro­ject and the var­i­ous ad­van­tages their de­ploy­ment of­fers in a par­ti­cle ac­cel­er­a­tor en­vi­ron­ment. This opens up the pos­si­bil­ity for the de­ploy­ment of het­ero­ge­neous im­ple­men­ta­tions that would oth­er­wise have been im­prac­ti­cal.  
slides icon Slides TUOXGD2 [5.797 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXGD2  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)