MC2: Photon Sources and Electron Accelerators
T15: Undulators and Wigglers
Paper Title Page
WEIYSP1 New Designs of Short-Period Undulators for Producing High-Brightness Radiation in Synchrotron Light Sources 1624
 
  • E.J. Wallén
    LBNL, Berkeley, California, USA
 
  We re­view mod­ern state-of-the-art and new con­cepts of un­du­la­tors planned for new gen­er­a­tion light sources. Both su­per­con­duct­ing and per­ma­nent-mag­net-based in­ser­tion de­vices fea­ture unique so­lu­tions to reach high pre­cisely tun­able fields in the pe­riod range of 10-18 mm, 2-4 me­ters in length and with the ID gaps of less than 5 mm. The same quest for small gaps and short­est pos­si­ble pe­riod length ex­ists also for el­lip­ti­cally po­lar­iz­ing un­du­la­tors. A re­view of new de­signs in Eu­rope, Asia and Amer­i­cas will be in the focus of this pre­sen­ta­tion.  
slides icon Slides WEIYSP1 [21.171 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIYSP1  
About • Received ※ 15 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT002 Beam Power Deposition on the Cryogenic Permanent Magnet Undulator 2556
 
  • L.R. Carver, C. Benabderrahmane, P. Brumund, N. Carmignani, J. Chavanne, G. Le Bec, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  X-rays with high bril­liance and low phase er­rors are gen­er­ated in the Cryo­genic Per­ma­nent Mag­net Un­du­la­tor (CPMU) cur­rently in use at the ESRF. In the event of a fail­ure of the cryo­genic cool­ing the beam will con­tinue to de­posit power into the mod­ule, even when the un­du­la­tor jaws are fully opened. This could lead to un­ac­cept­ably high heat­ing of the mag­net blocks which could cause their de­mag­neti­sa­tion. Im­ped­ance sim­u­la­tions were per­formed using IW2D and CST to com­pute the power de­posited by the beam in both the closed and open jaw set­tings. This was fol­lowed by ther­mal sim­u­la­tions to com­pute the ex­pected tem­per­a­ture rise. These re­sults will help ad­vise the op­er­a­tional pro­ce­dure in the event of a cool­ing fail­ure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT002  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT032 SUNDAE2 at EuXFEL: A Test Stand to Characterize the Magnetic Field of Superconducting Undulators 2649
 
  • J.E. Baader, S. Abeghyan, S. Casalbuoni, D. La Civita, B. Marchetti, M. Yakopov, P. Ziolkowski
    EuXFEL, Schenefeld, Germany
  • H.-J. Eckoldt, A. Hauberg, S. Lederer, L. Lilje, T. Wohlenberg, R. Zimmermann
    DESY, Hamburg, Germany
  • A.W. Grau
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Eu­ro­pean XFEL fore­sees a su­per­con­duct­ing un­du­la­tor (SCU) af­ter­burner in the SASE2 hard X-ray beam­line. It con­sists of six 5m-long un­du­la­tor mod­ules with a 5mm vac­uum gap, where each mod­ule con­tains two 2m-long coils and one phase shifter. Prior to in­stal­la­tion, the mag­netic field must be mapped ap­pro­pri­ately. Two mag­netic mea­sure­ment test stands named SUN­DAE 1 and 2 (Su­per­con­duct­ing UN­Du­lA­tor Ex­per­i­ment) are being de­vel­oped at Eu­ro­pean XFEL. While SUN­DAE1 will be a ver­ti­cal test stand to mea­sure SCU coils up to two me­ters with Hall probes in a liq­uid or su­per­fluid he­lium bath, SUN­DAE2 will mea­sure the SCU coils as­sem­bled in the final cryo­stat. This con­tri­bu­tion pre­sents the de­vel­op­ment sta­tus of SUN­DAE2 and its main re­quire­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT032  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT050 Development and Construction of Cryogenic Permanent Magnet Undulators for ESRF-EBS 2712
 
  • C. Benabderrahmane, P. Brumund, J. Chavanne, D. Coulon, G. Le Bec, B. Ogier, R. Versteegen
    ESRF, Grenoble, France
 
  The ESRF Ex­tremely Bril­liant Source (ESRF-EBS) is on op­er­a­tion for Users since Au­gust 2020 after 20 months of shut­down. This first of a kind fourth gen­er­a­tion high en­ergy syn­chro­tron is based on a Hy­brid Multi-Bend Achro­mat lat­tice. The main goal of the ESRF-EBS is to re­duce the hor­i­zon­tal emit­tance, which leads to a sig­nifi-cant in­crease of the X-ray source bril­liance. To cover the in­ten­sive de­mand of short pe­riod small gap un­du­la­tors at ESRF-EBS, a new de­sign for a 2 m Cryo­genic Per­ma­nent Mag­net Un­du­la­tor (CPMU) has been de­vel­oped. Six CPMUs will be in­stalled in the next years; the first two CPMUs have been con­structed and ac­tu­ally used on ID15 and ID16 beam­line, the third one is under con-struct­ing. An in­ten­sive re­fur­bish­ment work has been done on the ex­ist­ing in­ser­tion de­vices to adapt them to the new ac­cel­er­a­tor which has shorter straight sec­tion and closer dipoles to the IDs than in the old one. This con­tri­bu­tion will re­view the de­vel­op­ment, con­struc-tion and com­mis­sion­ing of the new CPMUs, and the re­fur­bish­ment work done on the ex­ist­ing ones to adapt them to the new ac­cel­er­a­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT050  
About • Received ※ 02 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT052 The Status of the In-Vacuum-APPLE II Undulator IVUE32 at HZB / BESSY II 2716
 
  • J. Bahrdt, J. Bakos, S. Gaebel, S. Gottschlich, S. Grimmer, S. Knaack, C. Kuhn, F. Laube, A. Meseck, C. Rethfeldt, E.C.M. Rial, A. Rogosch-Opolka, M. Scheer, P.I. Volz
    HZB, Berlin, Germany
 
  At BESSY II, two new beam­lines for RIXS and for X-Ray-mi­croscopy de­mand a short pe­riod vari­ably po­lar­iz­ing un­du­la­tor. For this pur­pose, the first in-vac­uum APPLE un­du­la­tor world­wide is under con­struc­tion. The pa­ra­me­ters are as fol­lows: pe­riod length=32mm, mag­netic length=2500mm, min­i­mum gap=7mm. The de­sign in­cor­po­rates a force com­pen­sa­tion scheme as pro­posed by two of the au­thors at the SRI2018. All pre­ci­sion parts of the drive chain are lo­cated in air. New trans­verse slides for the trans­ver­sal slit ad­just­ment have been de­vel­oped and tested. Op­ti­cal mi­crom­e­ters mea­sure the gap and shift po­si­tions, sim­i­lar to the sys­tem of the CP­MU17 at BESSY II. They pro­vide the sig­nals for motor feed­back loops. A new UHV-com­pat­i­ble sol­der­ing tech­nique, as de­vel­oped with in­dus­try, re­laxes fab­ri­ca­tion tol­er­ances of mag­nets and mag­net hold­ers and sim­pli­fies the mag­net as­sem­bly. A 10-pe­riod pro­to­type has been setup for life­time tests of the new mag­netic keeper de­sign. The paper de­scribes first re­sults of the pro­to­type and other key-com­po­nents and sum­ma­rizes the sta­tus of the full-scale un­du­la­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT052  
About • Received ※ 19 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT053 Goubau-Line Set Up for Bench Testing Impedance of IVU32 Components 2719
SUSPMF023   use link to see paper's listing under its alternate paper code  
 
  • P.I. Volz, A. Meseck
    HZB, Berlin, Germany
  • A. Meseck
    KPH, Mainz, Germany
 
  The world­wide first in-vac­uum el­lip­ti­cal un­du­la­tor, IVUE32, is being de­vel­oped at Helmholtz-Zen­trum Berlin. The 2.5 m long de­vice with a pe­riod length of 3.2 cm and a min­i­mum gap of about 7 mm is to be in­stalled in the BESSY II stor­age ring. It will de­liver ra­di­a­tion in the soft X-ray range to sev­eral beam­lines. The prox­im­ity of the un­du­la­tor struc­ture to the elec­tron beam makes the de­vice sus­cep­ti­ble to wake­field ef­fects which can in­flu­ence beam sta­bil­ity. A com­plete un­der­stand­ing of its im­ped­ance char­ac­ter­is­tics is re­quired prior to in­stal­la­tion and op­er­a­tion, as un­fore­seen heat­ing of com­po­nents could have cat­a­strophic con­se­quences. To un­der­stand and mea­sure the IVU’s im­ped­ance char­ac­ter­is­tics a Goubau-Line test stand is being de­signed. A Goubau-line is a sin­gle wire trans­mis­sion line for high fre­quency sur­face waves with a trans­verse elec­tric field re­sem­bling that of a charged par­ti­cle beam out to a cer­tain ra­dial dis­tance. A con­cept op­ti­mized for bench test­ing IVUE32-com­po­nents will be dis­cussed, mi­crowave sim­u­la­tions will be pre­sented to­gether with first mea­sure­ments from a test stand pro­to­type.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT053  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT058 Status and Powering Test Results of HTS Undulator Coils at 77 K for Compact FEL Designs 2726
SUSPMF024   use link to see paper's listing under its alternate paper code  
 
  • S.C. Richter, A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
  • A. Ballarino, T.H. Nes, S.C. Richter, D. Schoerling
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the Wolfgang Gentner Program of the German Federal Ministry of Education and Research (grant no. 05E18CHA).
The pro­duc­tion of low emit­tance positron beams for fu­ture lin­ear and cir­cu­lar lep­ton col­lid­ers, like CLIC or FCC-ee, re­quires high-field damp­ing wig­glers. Just as com­pact free-elec­tron lasers (FELs) re­quire high-field but as well short-pe­riod un­du­la­tors to emit high en­er­getic, co­her­ent pho­tons. Using high-tem­per­a­ture su­per­con­duc­tors (HTS) in the form of coated ReBCO tape su­per­con­duc­tors al­lows higher mag­netic field am­pli­tudes at 4 K and larger op­er­at­ing mar­gins as com­pared to low-tem­per­a­ture su­per­con­duc­tors, like Nb-Ti. This con­tri­bu­tion dis­cusses the de­vel­op­ment work on su­per­con­duct­ing ver­ti­cal race­track (VR) un­du­la­tor coils, wound from coated ReBCO tape su­per­con­duc­tors. The pre­sented VR coils were mod­u­larly de­signed with a pe­riod length of 13 mm. Pow­er­ing tests in liq­uid ni­tro­gen of mul­ti­ple ver­ti­cal race­track coils were per­formed at CERN. The re­sults from the mea­sure­ments are pre­sented for three VR coils and com­pared with elec­tro­mag­netic sim­u­la­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT058  
About • Received ※ 17 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT060 Tolerance Study on the Geometrical Errors for a Planar Superconducting Undulator 2734
 
  • V. Grattoni, S. Casalbuoni, B. Marchetti
    EuXFEL, Schenefeld, Germany
 
  At the Eu­ro­pean XFEL, a su­per­con­duct­ing af­ter­burner is con­sid­ered for the SASE2 hard X-ray beam­line. It will con­sist of six un­du­la­tor mod­ules. Within each mod­ule, two su­per­con­duct­ing un­du­la­tors (SCU) 2 m long are pre­sent. Such an af­ter­burner will en­able pho­ton en­er­gies above 30 keV. A high field qual­ity of the SCU is cru­cial to guar­an­tee the qual­ity of the elec­tron beam tra­jec­tory, which is di­rectly re­lated to the spec­tral qual­ity of the emit­ted free-elec­tron laser (FEL) ra­di­a­tion. There­fore, the ef­fects of the SCU’s me­chan­i­cal im­per­fec­tions on the re­sul­tant mag­netic field have to be care­fully char­ac­ter­ized. In this con­tri­bu­tion, we pre­sent pos­si­ble me­chan­i­cal er­rors af­fect­ing the un­du­la­tor struc­ture, and we per­form an an­a­lyt­i­cal study aimed at de­ter­min­ing the tol­er­ances on these er­rors for our SCUs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT060  
About • Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT061 European XFEL Undulators - Status and Plans 2737
 
  • S. Casalbuoni, S. Abeghyan, J.E. Baader, U. Englisch, V. Grattoni, S. Karabekyan, B. Marchetti, H. Sinn, F. Wolff-Fabris, M. Yakopov, P. Ziolkowski
    EuXFEL, Schenefeld, Germany
 
  Eu­ro­pean XFEL has three un­du­la­tor lines based on per­ma­nent mag­net tech­nol­ogy: two for hard and one for soft X-rays. The pla­nar un­du­la­tors can be tuned to cover the ac­cep­tance in terms of pho­ton beam en­ergy of the re­spec­tive pho­ton beam­lines: 3.6-25 keV (SASE1/2) and 0.25-3 keV (SASE3) by chang­ing the elec­tron en­ergy range be­tween 11.5 GeV and 17.5 GeV and/or the un­du­la­tor gap. In order to ob­tain dif­fer­ent po­lar­iza­tion modes, as re­quired by the soft X-ray beam­lines, a he­li­cal af­ter­burner con­sist­ing of four APPLE X un­du­la­tors de­signed by PSI has been in­stalled at the down­stream end of the pre­sent SASE3 un­du­la­tor sys­tem. The Eu­ro­pean XFEL plans to de­velop the tech­nol­ogy of su­per­con­duct­ing un­du­la­tors, which is of strate­gic im­por­tance for the fa­cil­ity up­grade. In order to ex­tend the en­ergy range above 30 keV a su­per­con­duct­ing un­du­la­tor af­ter­burner is fore­seen to be in­stalled at the end of SASE2. This con­tri­bu­tion pre­sents the cur­rent sta­tus and the planned up­grades of the un­du­la­tor lines at Eu­ro­pean XFEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT061  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT063 Design of Scilab Xcos Simulation Model for Pulsed Wire Method Data Analyses 2741
 
  • H. Jeevakhan
    NITTTR, Bhopal, India
  • S.M. Khan, G. Mishra
    Devi Ahilya University, Indore, India
 
  Pulsed wire method (PWM)is used for un­du­la­tor char­ac­ter­i­sa­tion. Scilab Xcos sim­u­la­tion model is de­signed for the analy­ses of data ob­tained by PWM. The data ob­tained from PWM is given as input to the model and its out­put gives the mag­netic field of the un­du­la­tor. Scilab Xcos model can also be uti­lized for de­ter­min­ing the phase error of the un­du­la­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT063  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT064 Hall Probe Magnetic Measurement of 50 mm Period PPM Undulator 2744
SUSPMF025   use link to see paper's listing under its alternate paper code  
 
  • S.M. Khan, G. Mishra
    Devi Ahilya University, Indore, India
  • M. Gehlot
    MAX IV Laboratory, Lund University, Lund, Sweden
  • H. Jeevakhan
    NITTTR, Bhopal, India
 
  In this paper, we pre­sent the lat­est upgra­da­tion of Hall Probe mag­netic mea­sure­ment sys­tem. The Hall Probe mea­sure­ment sys­tem is up­graded with po­si­tion mea­sur­ing de­tec­tors and 3D F.W. Bell Tes­lame­ter. The field in­te­grals and the phase er­rors are cal­cu­lated with a new user friendly MAT­LAB code. The in­te­grated mul­ti­poles both nor­mal and skew com­po­nents are mea­sured and dis­cussed in the paper. The pro­posed ac­tiv­i­ties on 300 mm length pro­to­type asym­met­ric un­du­la­tor and 50 mm quasi pe­riod, six pe­riod length at Laser In­stru­men­ta­tion and In­ser­tion De­vice Ap­pli­ca­tion lab­o­ra­tory of Devi Ahilya Vishwa Vidyalaya (DAVV), In­dore, India has been dis­cussed and de­sign com­po­nents are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT064  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT066 Helical Wiggler Design for Optical Stochastic Cooling at CESR 2751
 
  • V. Khachatryan, M.B. Andorf, I.V. Bazarov, J.A. Crittenden, S.J. Levenson, J.M. Maxson, D.L. Rubin, J.P. Shanks, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • W.F. Bergan
    BNL, Upton, New York, USA
 
  Funding: The authors thank the Center for Bright Beams, NSF award PHY-1549132; W.F.B. was supported by the NSF Graduate Research Fellowship Program under grant number DGE-1650441.
A he­li­cal wig­gler with pa­ra­me­ter kund=4.35 has been de­signed for the Op­ti­cal Sto­chas­tic Cool­ing (OSC) ex­per­i­ment in the Cor­nell Elec­tron Stor­age Ring (CESR). We con­sider four Hal­bach ar­rays, which di­men­sions are op­ti­mized to get the re­quired he­li­cal field pro­file, as well as, to get the best Dy­namic Aper­ture (DA) in sim­u­la­tions. The end poles are de­signed with dif­fer­ent di­men­sions to min­i­mize the first and sec­ond field in­te­grals to avoid the need of ad­di­tional cor­rec­tors for the beam orbit. The de­sign is adopted to min­i­mize the risks for the mag­net blocks de­mag­ne­ti­za­tion. To quan­tify the tol­er­ances, we sim­u­lated the ef­fects of dif­fer­ent types of geo­met­ri­cal and mag­netic field er­rors on the OSC damp­ing rates. In ad­di­tion, to un­der­stand the chal­lenges for the con­struc­tion, as well as, to val­i­date the model field cal­cu­la­tions, we pro­to­typed a small two pe­riod ver­sion. The pro­to­type field is com­pared to the model, and the re­sults are pre­sented in this work.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT066  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK010 Development of a Short Period Superconducting Helical Undulator 2788
 
  • A.G. Hinton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J. Boehm, L. Cooper, B. Green, T. Hayler, P. Jeffery, C.P. Macwaters, B.J.S. Matthews
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • S. Milward
    DLS, Oxfordshire, United Kingdom
  • B.J.A. Shepherd, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Su­per­con­duct­ing tech­nol­ogy pro­vides the pos­si­bil­ity to de­velop short pe­riod, small bore un­du­la­tors that can gen­er­ate much larger mag­netic fields than al­ter­na­tive tech­nolo­gies. This may allow an XFEL with op­ti­mised su­per­con­duct­ing un­du­la­tors to cover a broader range of wave­lengths than tra­di­tional un­du­la­tors. At STFC, we have un­der­taken work to de­sign and build a pro­to­type su­per­con­duct­ing he­li­cal un­du­la­tor mod­ule with pa­ra­me­ters suit­able for use on a fu­ture XFEL fa­cil­ity. This work in­cludes the de­sign of an un­du­la­tor with 13 mm pe­riod and 5 mm mag­netic gap, as well as the sup­port­ing cryo­genic and vac­uum sys­tems re­quired for op­er­a­tion. We pre­sent here the up­dated de­sign of the su­per­con­duct­ing he­li­cal un­du­la­tor that rep­re­sents the re­sults of pro­to­typ­ing work. Im­proved meth­ods for man­u­fac­tur­ing the un­du­la­tor for­mer and wind­ing the su­per­con­duct­ing wire have been de­vel­oped. The mea­sured me­chan­i­cal tol­er­ances and the im­pact on the field qual­ity will be pre­sented. The fields pro­duced by pro­to­type un­du­la­tors will soon be mea­sured using a Hall probe sys­tem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK010  
About • Received ※ 06 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)