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Introduction

Introduction

I Today’s state of the art light sources, such as 3rd generation synchrotron radiation storage rings,
diffraction limited storage rings, and linear accelerator free electron lasers are all using undulators
for the production of high brightness synchrotron radiation.

I In order to push the photon energy spectrum to higher photon energies, without increasing the
energy of the accelerator electron beam, the period length should be as short as possible.

I For short wavelength planar polarization, in-vacuum undulators is the main workhorse at light
sources. For elliptically polarized light, small gap elliptically polarizing undulators are installed
around a thin extruded aluminum vacuum chamber.

I A recent development is that the new diffraction limited storage rings, as well as free electron
lasers, allow the installation of round small diameter vacuum chambers.

I The intention with this presentation is to give an overview of the development of short period
undulators, both planar and elliptically polarizing.
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In-Vacuum Undulators

In-Vacuum Undulators

I After the first proposal to build and install
an in-vacuum undulator at KEK in Japan
[1], there has been a tremendous evolution
of the in-vacuum technology.

I The main initial driver of the development
of in-vacuum undulators was SPring8 in
Japan [2, 3].

I Other laboratories have followed and
in-vacuum undulators have been further
developed at, for example, the ESRF in
France [4] and PSI in Switzerland [5].
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In-Vacuum Undulators

Examples of In-Vacuum Undulators at Free Electron Lasers

The SACLA undulator Hall [6] at RIKEN SPring-8 Center.
with two 100 m rows of in-vacuum unulators

The row of U15 undulators for the ARAMIS beamline at the
SwissFEL at PSI [5]

E. Wallén, Wed 15 June 2022 Short-Period Undulators for Synchrotron Light Sources 5 / 32



Contents Intro In-Vac Cold-In-Vac SCU EPU Novel Sum References

In-Vacuum Undulators

Issues with In-Vacuum Undulators

I The in-vacuum undulator technology is fully mature and industrial
partners can deliver complete undulator systems with individual
undulator lengths of 5 m or more.

I The grade of magnet material used in the hybrid type magnet structure
stands the elevated temperatures during the initial vacuum bake-out
after installation and vacuum problems are rare.

I Mechanical problems are rare [7] and the main problem with in-vacuum
undulators is that, being close to the smallest aperture in the
accelerator, they may be exposed to demagnetization, showing reduced
radiation properties and changing multipole contents.

I The maximum magnetic field strength is limited by the maximum
remanence of the rare earth alloys used. Some enhancement of the field
is obtained by carefully surround the poles, which are made of soft
magnetic material, with permanent magnet material.

Demagnetization, or field reversal, in
a SACLA in-vacuum unulator [8]
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Cryogenically Cooled In-Vacuum Undulators

Cryogenically Cooled In-Vacuum Undulators

I The shortcomings of the in-vacuum undulator, with sensitivity to radiation induced demagnetization and
the limit put by rare earth materials at room temperature, were addressed by suggesting to cool the
magnet rows down to cryogenic temperatures and that make use of the increased remanence and intrinsic
coercivity of the magnet material at low temperatures [9].

I In principle, the change from running cooling water to keep the in-vacuum undulator at room temperature
to instead run a cryogenic fluid or install cryocoolers to keep the magnet rows at cryogenic temperatures,
is minor. In practice, however, it is rather complicated and the various thermal expansion rates of the
mechanical supports structure, the magnet material properties that change with temperature, and the
necessity of carrying out magnetic measurement in-situ under vacuum in the undulator have been
challenging.

I By a major effort carried out at several laboratories [10, 11, 12, 13, 14, 15, 16], the challenges have been
overcome and the cryogenically cooled undulator technology is now a mature technology and it is possible
to order cryogenically cooled undulators from industry. The maximum undulator length is however limited
to about 4 m.
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Cryogenically Cooled In-Vacuum Undulators

Working Principle of a Cryogenically Cooled In-Vacuum Undulator [11, 15]

Installation of a Cryogenically Cooled In-Vac at
Soleil
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Cryogenically Cooled In-Vacuum Undulators

Cooling of a Cryogenically Cooled In-Vacuum Undulator [11]
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Cryogenically Cooled In-Vacuum Undulators

Overview of Cryogenically Cooled In-Vacuum Undulators Installed at Light Sources [16]
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Superconducting Undulators

Superconducting Undulators

I Superconducting wavelength shifters and wiggler shave with success been used
at synchrotron light sources for decades and the experience from these
application regarding cryostats, cryocoolers, heat loads, winding techniques,
and current leads was valuable for the development of superconducting
undulators.

I Superconducting undulators can reach even higher fields that cryogenically
cooled in-vacuum undulators. Superconducting undulator are radiation hard
and can stand lost electron beams and hard x-rays without degrading. The
superconducting coils will quench at the radiation incident but recovers after
coils have cooled down again.

I The development of superconducting undulators using NbTi to the level of
commercialization has been driven by the Karlsruhe Institute of Technology
[17] and APS at Argonne [18].

I The performance can be further enhanced by using Nb3Sn wires that,
however, requires an elaborate heat treatment after winding, which leads to
further technical complications [19].
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Superconducting Undulators

Superconducting Undulator Coils, example from APS [18]

I The superconducting coils are wound
with a bobbin winding around a core of
iron with grooves for the wire. The
winding is without interruption and the
required wire length is about 5 km.

I The end sections consist of a gradual
decrease of the number of turns in the
last few slots.

I Small superconducting correction coils
are installed in the beginning and end
of the undulator.

I The achievable phase error of the
undulator depends greatly on the
mechanical precision obtained during
machining and winding.

E. Wallén, Wed 15 June 2022 Short-Period Undulators for Synchrotron Light Sources 12 / 32



Contents Intro In-Vac Cold-In-Vac SCU EPU Novel Sum References

Superconducting Undulators

The RMS phase error is brought down by using adjustable spacers between upper and lower coils [18]
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Superconducting Undulators

Cryocoolers are used in combination with a liquid He bath [17] or conduction cooling [18]
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Elliptically Polarizing Undulators

Elliptically Polarizing Undulators

I Elliptically polarizing undulators (EPU) give control of the polarization of the emitted
light. With four rows of magnets arbitrary polarization, both elliptical and inclined planar
polarization, can be achieved.

I In the same way as for undulators with planar polarization, there is a quest for the
shortest possible period length for elliptically polarizing undulators (EPU), which means
that the magnetic gap should be as small as possible.

I EPUs are normally mounted at the straight sections using an extruded aluminum vacuum
chamber that allows the magnet rows operate down to a gap of about 10 mm. Recently,
the first in-vacuum EPU was installed at a storage ring [20].

I The recent development of diffraction limited storage rings and free electron lasers has
made it possible to use a round vacuum chamber and bring the permanent magnets closer
to the beam compared to standard EPUs, which has enabled a new development trend.
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Elliptically Polarizing Undulators

Short period In-vacuum APPLE-II EPU developed at HZB [20]

The In-vacuum APPLE-II EPU is featuring force compensating magnets (left), interlaced support points for the magnet
rows (middle), and a staggered arrangement of the support columns through the vacuum tank(right).
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Elliptically Polarizing Undulators

Development of X-type undulators at the PSI [21, 22, 23, 24]

The PSI X-type undulator is featuring a cast iron frame, a round vacuum chamber, adjustable magnet holders for robot
tuning, and a moveable wedge system to adjust the radial position of the magnet rows.
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Elliptically Polarizing Undulators

Development of X-type undulators at Lawrence Berkeley National Laboratory (LBL)
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Elliptically Polarizing Undulators

Magnetic concept and magnetic forces of the LBL X-type undulator
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Elliptically Polarizing Undulators

Mechanical design overview of the LBL X-type undulator
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Elliptically Polarizing Undulators

Hydraulic actuator system of the LBL X-type undulator
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Elliptically Polarizing Undulators

Demonstrator unit of the LBL X-type undulator
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Novel Undulator Concepts

REBCO HTS tape used for superconducting undulators with high current density [25]
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Novel Undulator Concepts

Staggered superconducting undulator with possible high field strength [26, 27, 28, 29, 30]

E. Wallén, Wed 15 June 2022 Short-Period Undulators for Synchrotron Light Sources 24 / 32



Contents Intro In-Vac Cold-In-Vac SCU EPU Novel Sum References

Novel Undulator Concepts

Undulator using structured REBCO HTS tape [31, 32]
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Summary

Conclusions

I Since its introduction 30 years ago, the in-vacuum undulator technology has gone through a tremendous
evolution and is now a fully mature technology. In-vacuum undulators populate 3rd and 4th generation
light sources all around the world.

I The cryogenically cooled in-vacuum undulators have over the past decade evolved to a mature technology.
Compared to in-vacuum undulators, they have even higher magnetic fields and radiation hardness.

I Superconducting undulators have over the past few years matured into mature technology.
Superconducting undulators have even higher fields than cryogenically cooled in-vacuum undulators.

I The 4th generation light sources with diffraction limited storage rings have opened up the possibility to
have small circular vacuum chambers in the straight sections of storage rings in addition to linac based
FELs, which has led to a development of X-type undulators.

I The above mentioned workhorses for synchrotron radiation production will likely dominate the field of
undulators for light sources over the foreseeable future.

I A possible breakthrough in the application of high temperature superconductors may lead to a new
direction for the development of short period undulators.
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Recent developments of insertion devices at spring-8.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467-468:110–113,
2001.
7th Int.Conf. on Synchrotron Radiation Instrumentation.

[4] J. Chavanne, C. Penel, B. Plan, and F. Revol.
In-vacuum undulators at esrf.
In Proceedings of the 2003 Particle Accelerator Conference, volume 1, pages 253–255 Vol.1, 2003.

[5] M. Calvi, C. Camenzuli, R. Ganter, N. Sammut, and Th. Schmidt.
Magnetic assessment and modelling of the Aramis undulator beamline.
Journal of Synchrotron Radiation, 25(3):686–705, May 2018.

[6] Tetsuya Ishikawa.
Early days of sacla xfel.
Photonics, 9(5), 2022.

E. Wallén, Wed 15 June 2022 Short-Period Undulators for Synchrotron Light Sources 27 / 32



Contents Intro In-Vac Cold-In-Vac SCU EPU Novel Sum References

References

References II

[7] Marco Musardo, Toshi Tanabe, Jim Rank, Daved Harder, Peter Cappadoro, Todd Corwin, and Craig Rhein.
Magnetic field optimization of an in-vacuum undulator at nsls-ii.
IEEE Transactions on Applied Superconductivity, 30(4):1–4, 2020.

[8] Teruhiko Bizen, Ryota Kinjo, Teruaki Hasegawa, Akihiro Kagamihata, Yuichiro Kida, Takamitsu Seike, Takahiro Watanabe, Toru Hara, Toshiro Itoga,
Yoshihiro Asano, and Takashi Tanaka.
Radiation-induced magnetization reversal causing a large flux loss in undulator permanent magnets.
Scientific reports, 6:37937–37937, 11 2016.

[9] Toru Hara, Takashi Tanaka, Hideo Kitamura, Teruhiko Bizen, Xavier Maréchal, Takamitsu Seike, Tsutomu Kohda, and Yutaka Matsuura.
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