Author: Vretenar, M.
Paper Title Page
TUOXSP3 Evaluation of Geometrical Precision and Surface Roughness Quality for the Additively Manufactured Radio Frequency Quadrupole Prototype 787
 
  • T. Torims, D. Krogere, G. Pikurs, A. Ratkus
    Riga Technical University, Riga, Latvia
  • A. Cherif, M. Vretenar
    CERN, Meyrin, Switzerland
  • N. Delerue
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • M. Foppa Pedretti, M. Pozzi
    Rösler Italiana s.r.l., Concorezzo, Italy
  • S. Gruber, E. Lopez
    Fraunhofer IWS, Dresden, Germany
  • T. Otto
    TalTech, Tallinn, Estonia
  • M. Thielmann, P. Wagenblast
    TRUMPF, Ditzingen, Germany
  • M. Vedani
    POLIMI, Milano, Italy
 
  A multidisciplinary collaboration within the I.FAST project teamed-up to develop additive manufacturing (AM) technology solutions for accelerators. The first prototype of an AM pure-copper radio frequency quadrupole (RFQ) has been produced, corresponding to 1/4 of a 4-vane RFQ*. It was optimised for production with state-of-the-art laser powder bed fusion technology. Geometrical precision and roughness of the critical surfaces were measured. Alt-hough the obtained values were beyond standard RFQ specifications, these first results are promising and con-firmed the feasibility of AM manufactured complex cop-per accelerator cavities. Therefore, further post-processing trials have been conducted with the sample RFQ to im-prove surface roughness. Algorithms for the AM techno-logical processes have also been improved, allowing for higher geometrical precision. This resulted in the design of a full 4-vane RFQ prototype. At the time of the paper submission the full-size RFQ is being manufactured and will undergo through the stringent surface quality meas-urements. This paper is discussing novel technological developments, is providing an evaluation of the obtained surface roughness and geometrical precision as well as outlining the potential post-processing scenarios along with future tests plans.
* Torims T, et al. First Proof-of-Concept Prototype of an Additive Manufactured Radio Frequency Quadrupole. Instruments. 2021; 5(4):35. https://doi.org/10.3390/instruments5040035
 
slides icon Slides TUOXSP3 [10.031 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXSP3  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOZGD2 A Compact Synchrotron for Advanced Cancer Therapy with Helium and Proton Beams 811
THPOMS021   use link to see paper's listing under its alternate paper code  
 
  • M. Vretenar, M.E. Angoletta, J.C.C.M. Borburgh, L. Bottura, K. Paļskis, R.L. Taylor, G. Tranquille
    CERN, Meyrin, Switzerland
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • M. Sapinski
    PSI, Villigen PSI, Switzerland
 
  Recent years have seen an increased interest in the use of helium for radiation therapy of cancer. Helium ions can be more precisely delivered to the tumour than protons or carbon ions, presently the only beams licensed for treatment, with a biological effectiveness between the two. The accelerator required for helium is considerably smaller than a standard carbon ion synchrotron. To exploit the potential of helium therapy and of other emerging particle therapy techniques, in the framework of the Next Ion Medical Machine Study (NIMMS) at CERN the design of a compact synchrotron optimised for acceleration of proton and helium beams has been investigated. The synchrotron is based on a new magnet design, profits from a novel injector linac, and can provide both slow and fast extraction for conventional and FLASH therapy. Production of mini-beams, and operation with multiple ions for imaging and treatment are also considered. This accelerator is intended to become the main element of a facility devoted to a programme of cancer research and treatment with proton and helium beams, to both cure patients and contribute to the assessment of helium beams as a new tool to fight cancer.  
slides icon Slides TUOZGD2 [1.940 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOZGD2  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEINGD1 Industry and Accelerator Science, Technology, and Engineering - the Need to Integrate (Building Bridges) 1644
 
  • R. Geometrante
    KYMA, Trieste, Italy
  • S. Biedron
    Element Aero, Chicago, USA
  • E. Braidotti
    CAEN ELS srl, Trieste, Italy
  • J.M.A. Priem
    VDL ETG, Eindhoven, The Netherlands
  • J.C. Rugsancharoenphol
    FTI, Bangkok, Thailand
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • M. Vretenar
    CERN, Meyrin, Switzerland
 
  Abstract  
slides icon Slides WEINGD1 [36.079 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEINGD1  
About • Received ※ 05 July 2022 — Accepted ※ 04 July 2022 — Issue date ※ 05 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS012 Explorative Studies of an Innovative Superconducting Gantry 2966
 
  • M.G. Pullia, M. Donetti, E. Felcini, G. Frisella, A. Mereghetti, A. Mirandola, A. Pella, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • L. Dassa, M. Karppinen, D. Perini, D. Tommasini, M. Vretenar
    CERN, Meyrin, Switzerland
  • E. De Matteis, L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • C. Kurfürst, M.T.F. Pivi, M. Stock
    EBG MedAustron, Wr. Neustadt, Austria
  • S. Mariotto, M. Prioli
    INFN-Milano, Milano, Italy
  • L. Piacentini, A. Ratkus, T. Torims, J. Vilcans
    Riga Technical University, Riga, Latvia
  • L. Sabbatini, A. Vannozzi
    LNF-INFN, Frascati, Italy
  • S. Uberti
    Università di Brescia, Brescia, Italy
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The Heavy Ion Therapy Research Integration plus (HITRIplus) is a European project that aims to integrate and propel research and technologies related to cancer treatment with heavy ions beams. Among the ambitious goals of the project, a specific work package includes the design of a gantry for carbon ions, based on superconducting magnets. The first milestone to achieve is the choice of the fundamental gantry parameters, namely the beam optics layout, the superconducting magnet technology, and the main user requirements. Starting from a reference 3T design, the collaboration widely explored dozens of possible gantry configurations at 4T, aiming to find the best compromise in terms of footprint, capital cost, and required R&D. We present here a summary of these configurations, underlying the initial correlation between the beam optics, the mechanics, and the main superconducting dipoles design: the bending field (up to 4 T), combined function features (integrated quadrupole), magnet aperture (up to 90 mm), and angular length (30°-45°). The resulting main parameters are then listed, compared, and used to drive the choice of the best gantry layout to be developed in HITRIplus.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS012  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS022 Production of Radioisotopes for Cancer Imaging and Treatment with Compact Linear Accelerators 2996
 
  • M. Vretenar, A. Mamaras
    CERN, Meyrin, Switzerland
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • P. Foka
    GSI, Darmstadt, Germany
 
  Accelerator-produced radioisotopes are widely used in modern medicine, for imaging, for cancer therapy, and for combinations of therapy and diagnostics. Clinical trials are well advanced for several radioisotope-based treatments that might open the way to a strong request of specific accelerator systems dedicated to radioisotope production. While cyclotrons are the standard tool in this domain, we explore here alternative options using linear accelerators. Compared to cyclotrons, linacs have the advantage of modularity, compactness, and reduced beam loss with lower shielding requirements. Although in general more expensive than cyclotrons, linacs are competitive in cost for production of low-energy proton beams, or of intense beams of heavier particles. After a review of radioisotopes of potential interest, in particular those produced with low-energy protons or helium, this paper presents two linac-based isotope production systems. The first is a compact RFQ-based system for PET isotopes, and the second is an alpha-particle linac for production of alpha-emitters. The accelerator systems are described, together with calculations of production yields for different targets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS022  
About • Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS048 Challenge Based Innovation "Accelerators for the Environment" 3077
 
  • N. Delerue
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • P. Burrows
    JAI, Oxford, United Kingdom
  • R. Holland, L. Rinolfi
    ESI, Archamps, France
  • E. Métral, M. Vretenar
    CERN, Meyrin, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.
We present an initiative to foster new ideas about the applications of accelerators to the Environment. Called "Challenge Based Innovation" this initiative will gather four teams each of six master-level students each coming from different academic backgrounds. As part of the EU-funded I.FAST project (Innovation Fostering in Accelerator Science and Technology), they will gather during 10 days in Archamps near CERN to receive high level lectures on accelerators and the environment and to brainstorm on possible new applications of accelerators for the environment. At the end of the gathering, they will present their project at CERN to a jury made of experts.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS048  
About • Received ※ 09 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS049 Energy Comparison of Room Temperature and Superconducting Synchrotrons for Hadron Therapy 3080
 
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • E. Benedetto, M. Karppinen, M.R. Khalvati, M. Vretenar, R. van Weelderen
    CERN, Meyrin, Switzerland
  • M.G. Pullia, G. Venchi
    CNAO Foundation, Pavia, Italy
  • L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • M. Sapinski
    PSI, Villigen PSI, Switzerland
  • M. Sorbi
    Universita’ degli Studi di Milano & INFN, Segrate, Italy
  • R.U. Valente
    La Sapienza University of Rome, Rome, Italy
 
  The yearly energy requirements of normal conducting (NC) and superconducting (SC) magnet options of a new hadron therapy (HT) facility are compared. Special reference is made to the layouts considered for the proposed SEEIIST facility. Benchmarking with the NC CNAO HT centre in Pavia (Italy) was carried out. The energy comparison is centred on the different synchrotron solutions, assuming the same injector and lines in the designs. The beam current is more than a factor 10 higher with respect to present generation facilities. This allows efficient ’multi-energy extraction’ (MEE), which shortens the therapy treatment and is needed especially in the SC option, because of the slow magnet ramping time. Hence, power values of the facility in the traditional mode were converted into MEE ones, for the sake of a fair stepwise comparison between NC and SC magnets. The use of cryocoolers and a liquefier are also compared, for synchrotron refrigeration. This study shows that a NC facility operated in MEE mode requires the least average energy, followed by the SC synchrotron solution with a liquefier, while the most energy intensive solution is the SC one with cryocoolers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS049  
About • Received ※ 20 May 2022 — Revised ※ 17 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)