Author: Tsoupas, N.
Paper Title Page
MOPOTK060 An Induction-Type Septum Magnet for the EIC Complex 603
 
  • N. Tsoupas, D. Holmes, C. Liu, I. Marneris, C. Montag, V. Ptitsyn, V.H. Ranjbar, J.E. Tuozzolo
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The electron Ion Collider (eIC) project* has been approved by the Department of Energy to be built at the site of Brookhaven National Laboratory (BNL). Part of the eIC accelerator complex and more specifically the Rapid Cycling Syncrotron (RCS) which accelerates the electron beam up to 18 GeV and the electron Storage Ring (eSR) which stores the electron beam bunces for collisions with the hadrons, will be built inside the tunnel of the Relativistic Heavy Ion Collider (RHIC)**. This paper provides information on the electromagnetic design of the septa magnets which will be employed to inject and extract the beam to and from the two synchrotrons used for the acceleration and storage of the electron beam bunches. The type of the septum is of induction type made o laminated iron and it is similar to the one described in ref.[3] The electromagnetic study is performed by the use of the transient module of the OPERA computer code***.
* https://ww.bnl.gov/eic/
** A. Zhuravlev, et al. PIPAC2013, Shanghai, China
*** https://www.3ds.com/products-services/simulia/products/opera/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK060  
About • Received ※ 05 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIXGD1 EIC Beam Dynamics Challenges 1576
 
  • D. Xu, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, W.F. Bergan, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, C. Montag, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, USA
  • A. Blednykh, Y. Luo, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The Electron Ion Collider aims to produce luminosities of 1034 cm-2s-1 . The machine will operate over a broad range of collision energies with highly polarized beams. The coexistence of highly radiative electrons and nonradiative ions produce a host of unique effects. Strong hadron cooling will be employed for the final factor of 3 luminosity boost.  
slides icon Slides WEIXGD1 [3.952 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIXGD1  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOYGD2
Results of the Coherent Electron Cooling Experiment at RHIC  
 
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • Z. Altinbas, S.J. Brooks, J.C. Brutus, Z.A. Conway, L. Cultrera, A.J. Curcio, L. DeSanto, A. Di Lieto, K.A. Drees, W. Fischer, M. Gaowei, X. Gu, M. Harvey, T. Hayes, H. Huang, M. Ilardo, P. Inacker, J.P. Jamilkowski, Y.C. Jing, P.K. Kankiya, R. Karl, D. Kayran, J. Kewisch, J. Ma, G.J. Mahler, G.J. Marr, A. Marusic, R.J. Michnoff, M.G. Minty, G. Narayan, L.K. Nguyen, M.C. Paniccia, I. Pinayev, T. Rao, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, M.P. Sangroula, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, J. Skaritka, L. Smart, A. Sukhanov, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, G. Wang, D. Weiss, B.P. Xiao, A. Zaltsman
    BNL, Upton, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Coherent electron Cooling (CeC) experiment aims on demonstrating cooling during this RHIC run, which will be concluded in April 2022. In this talk we will present results of the CeC experiment with special focus won the use and the control of the broad-band micro-bunching Plasma Cascade Amplifier with bandwidth of 15 THz. We will also discuss connection of this experiment with the developing the CeC cooler for future Electron Ion Collider.
 
slides icon Slides WEOYGD2 [18.592 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT028 Design Update on the HSR Injection Kicker for the EIC 1904
 
  • M.P. Sangroula, C.J. Liaw, C. Liu, J. Sandberg, N. Tsoupas, B.P. Xiao
    BNL, Upton, New York, USA
  • X. Sun
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The Electron-Ion Collider (EIC), the next-generation nuclear science facility, is under the design at the Brookhaven National Laboratory. The present RHIC rings will be reconfigured as the Hadron Storage Ring (HSR) for the EIC. Design of a stripline injection kicker for the HSR for beams with the rigidity of  ∼  81   T-m poses some technical challenges due to the expected shorter bunch spacing, heating due to higher peak current and the larger number of bunches, and the required higher pulsed voltage. Recently, we updated its mechanical design to optimize the characteristic and beam coupling impedances. In addition, we incorporated the impedance tuning capability by introducing the kicker aperture adjustment mechanism. Finally, we incorporated high voltage FID feedthroughs (FC26) to this kicker. This paper reports the design and optimization updates of the HSR injection kicker including the impedance tuning capability, optimization of both the characteristic and the beam coupling impedances, and finally the incorporation of a high voltage feedthrough design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT028  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT044 Electron-Ion Collider Design Status 1954
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J.P. Jamilkowski, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, D. Xu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, USA
  • A. Blednykh, D.M. Gassner, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is being designed for construction at Brookhaven National Laboratory. Activities have been focused on beam-beam simulations, polarization studies, and beam dynamics, as well as on maturing the layout and lattice design of the constituent accelerators and the interaction region. The latest design advances will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT047 Beam Optics of the Injection/Extraction and Beam Transfer in the Electron Rings of the EIC Project 1964
 
  • N. Tsoupas, D. Holmes, C. Liu, C. Montag, V. Ptitsyn, V.H. Ranjbar, J. Skaritka, J.E. Tuozzolo, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) project* has been approved by the Department of Energy to be built at the site of Brookhaven National Laboratory (BNL). The goal of the project is the collision of energetic (of many GeV/amu) ion species with electron bunches of energies up to 18 GeV. The EIC includes two electron rings, the Rapid Cycling Synchrotron (RCS) which accelerates the electron beam up to 18 GeV, and the Electron Storage Ring (ESR) which stores the electron beam for collisions with hadron beam, both to be installed in the same tunnel as the Hadron Storage Ring (HSR). This paper discusses the layout and the beam optics of the injection/extraction beam lines the electron rings and the beam optics of the transfer line from the RCS to the ESR ring.
* https://www.bnl.gov/eic/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT047  
About • Received ※ 05 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST005 Tracking Dynamic Aperture in the iRCMS Hadrontherapy Synchrotron 2442
 
  • F. Méot, P.N. Joshi, N. Tsoupas
    BNL, Upton, New York, USA
  • J.P. Lidestri, M.R. Subramanian
    Best Medical International, Springfield, USA
 
  Funding: Work supported by a TSA between Best Medical International and Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Dynamic aperture (DA) studies which are part of the ion Rapid Cycling Medical Synchrotron (iRCMS) lattice design have been undertaken. They are aimed at supporting on-going plans to launch the production of the six magnetic sectors which comprise the iRCMS racetrack arcs. The main bend magnetic gap is tight, so allowing smaller volume magnets and resulting in a compact ring. The DA happens to be commensurate with the mechanical aperture, thus tracking accuracy is in order. In that aim, DA tracking uses the OPERA field maps of the six 60 degree magnetic sectors of the arcs. Simulation outcomes are summarized here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST005  
About • Received ※ 03 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT034 Reconfiguration of RHIC Straight Sections for the EIC 1916
 
  • C. Liu, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, S. Verdú-Andrés, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Electron-Ion Collider (EIC) will be built in the existing Relativistic Heavy Ion Collider (RHIC) tunnel with the addition of electron acceleration and storage rings. The two RHIC rings will be reconfigured as a single Hadron Storage Ring (HSR) for accelerating and storing ion beams. The proton beam energy will be raised from 255 to 275 GeV to achieve the desired center-of-mass energy range: 20’140 GeV. It is also mandatory to operate the HSR with a constant revolution frequency over a large energy range (41’275 GeV for protons) to synchronize with the Electron Storage Ring (ESR). These and other requirements/challenges dictate modifications to RHIC accelerators. This report gives an overview of the modifications to the RHIC straight sections together with their individual challenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT034  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK014 Hadron Storage Ring 4 O’clock Injection Design and Optics for the Electron-Ion Collider 2068
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, USA
 
  The Hadron Storage Ring (HSR) of the Electron-Ion Collider (EIC) will accelerate protons and heavy ions up to a proton energy of 275 GeV and an Au+79 110 GeV/u to collide with electrons of energies up to 18 GeV. To accomplish the acceleration process, the hadrons are pre-accelerated in the Alternating Gradient Synchrotron (AGS), extracted, and transferred to HSR for injection. The planned area for injection is the current Relativistic Heavy Ion Collider (RHIC) 4 o’clock straight section. To inject hadrons, a series of modifications must be made to the existing RHIC 4 o’clock straight section to accommodate for the 20 new ~18 ns injection kickers and a new injection septum, while providing sufficient space and proper beam conditions for polarimetry equipment. These modifications will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK014  
About • Received ※ 02 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)