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Introduction — Electron lon Collider

Science goals
@ How does the mass of the nucleon arise?
@ How does the spin of the nucleon arise?

@ What are the emergent properties of
dense systems of gluons?

Design goals
e High luminosity: 1033 — 10%* cm 257!
@ center-of-mass energies: 20 — 140 GeV
@ Polarized proton and electron beams:
70%

@ Large range of hadron species: Proton -
Uranium

HSR — Hadron Storage Ring
o ESR — Electron Storage Ring
o P055|b|||ty Of 2nd IR RCS — Rapid Cycling Synchrotron




Luminosity — Overview

Large crossing angle 25 mrad, fast separation to avoid parasitic collision

Local crab crossing: upstream and downstream crab cavities to restore
effective head-on collision to compensate geometric luminosity loss

Large beam-beam parameters, e ~ 0.1,p ~ 0.015, combination never
experimentally demonstrated

Flat beam o, /o, = 0.09 to achieve highest e-p luminosity 103* cm=2s~!

Parameter unit proton electron
~ o, -~ Circumference m 3833.8451
\ % y , Particle energy Gev 275 10
. Vs Bunch intensity 10" 0.668 1.72
N ’ # of Bunches - 1160
Bunch crabbing . o i Crossing angle mrad 25
[ B atlP cm 80/7.2 45/5.6
- | Peross = 25 mrad Beam sizes at IP pm 95/8.5
.’/ - ) Bunch length cm 6 2
Bunchdecatbing L e decabing Energy spread 1074 6.6 55
. N Transverse tunes - 0.228/0.210  0.08/0.06
AN Longitudinal tune - 0.01 0.069

BB parameter - 0.012/0.012  0.07/0.10
Luminosity 257! 103
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Luminosity — Synchro-betatron resonances (SBR)

@ Crabbed offset, due to sinusoidal kick from the crab cavities, drives
higher-order SBR in the proton beam Ax = —0. [sin(kcz)/ke — 2]
e vy, =0.228,v, = 0.210 to mitigate SBR
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@ 2nd order harmonic crab cavity is used to flatten the crabbed offset

—— wjo 2nd hce, grewth rate:36.1%/h
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Luminosity — Coherent beam-beam effects

Electron tune scan to avoid coherent instability, red: proton H centroid,
green: electron H centroid. Electron working point: (0.08,0.06)
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Luminosity — Collision with two IPs

@ A 2nd IR is reserved at IP8 for future upgrade. However, with same
beam-beam parameters, sum luminosity o 1/Nip

@ Time sharing, one IR taking data while the other one is idle

@ Or luminosity sharing, change bunch filling pattern, so that half
bunches collide at IP6, and the other bunches collide at IP8

1400 T

1200 / " @ The other half electron bunches
g / are shifted by 3 RF buckets
E o0 / @ IP8 should be moved away from
< 600 . .
g / IP6 for synchronization
& 400

0 / @ Each bunch only collides once

o per turn
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Luminosity — Tilted ESR

HSR lies in horizontal plane, while ESR is tilted by ~ 200 urad
@ Resolve interferences between rings, transfer lines, cooler ERL in IR2
@ Avoid vertical bends around ring crossing points to preserve polarization
o Effect on dynamics: —4 mrad rotation around s axis before collision,
and 4 mrad rotation after collision — vertical crabbing needed

IR10
1 IR12
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Polarization — QOverview

The EIC physics program requires highly polarized hadron and electron
beams with alternating spin orientation for the electron bunches
Polarized hadron beam:

@ Improvements of AGS: 70% achieved at extraction

@ Four additional Siberian snakes will be installed in HSR:

e increase polarization transmission for protons on the ramp to 275 GeV
to ~ 100%

o sufficiently suppress spin resonance width for the polarized 3He
@ spin rotators based on helical dipoles to transform spin directions
Polarized electron beam:
@ 85% longitudinal polarization in the source

@ RCS serves as acceleration and injection at full energy, high periodicity
to be free of intrinsic spin resonances

e Frequent "swap-out" injection to keep time-averaged polarization




Polarization — Depolarization in ESR

@ Spin matching of spin rotator optics minimized beam depolarization,
especially at 18 GeV

@ Spin simulation studies with magnet errors showed that with one in-
teraction region the average polarization of at least 70% is achievable.
Studies with two IRs are underway

@ Vertical emittance can be achieved using vertical bumps in ESR arcs,
with depolarization at an acceptable level

100 "
SIIT'ISgaSr Orbit corrected to rms: ~ 0.15 mm, cou-

80 pling corrected to below 0.005. SITROS includes

60 nonlinear sextupole fields and quantum excitation

%0 Assumed quadrupole RMS misalignments

Polarization [%]

20 el J horizontal offset 2@ 200 pm
S| .

040 202 404 406 408 p» vertical offset dy® 200 pm

a’y roll angle 8¢ 200 prad

At 18 GeV with 2.5 min refill time: 16% asymptotic polarization
corresponds to 70% average polarization
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Polarization — Electron bunch replacement

@ Physics program requires bunches with spin “up” and spin “down” (in
the arcs) to be stored simultaneously

@ Initial polarization ~ 85% decays towards P,, <~ 50%: Sokolov-
Ternov self-polarization and spin diffusion

@ Frequent injection is necessary to keep time-averaged polarization

@ At 18 GeV, every bunch is replaced (on average) after 2.2 min with
RCS cycling rate of 2Hz

BP BP
11 Refilled every 1.2 minutes Il Refilled every 3.2 minutes
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Polarization — Electron bunch replacement

0.1% emittance growth when injection on orbit
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Linear Beam Optics — IR design

e Strong focusing at IP, HSR:80/7.2 cm, ESR:45/5.6 cm
o Crab cavities: high Sy, specific W, and enough installation space
@ Accommodation to detector: 4.5 m rear, 5.0 m forward stay-clear...

Rear Forward
2.0
Hadrons Electrons

Detector

£ Q1BpR
£/Q1ApR

1.0 4 Exatwindow

Collimator,
Magnel%

Lum. detectors

x (m)
Q2eR
QleR'

0.5 4

Forward spectrometer
(in BO)

l\ BOpF.

0.0 4

Tagger 1
o
F
3
H
3
3
2
5
&
g

Roman Pots
Off-momentum detectors 2

Tagger 2

L7 .
Ui



Linear Beam Optics — Crab dispersion control

Crab cavities introduce z—dependent transverse kick

crab
cavity | .

’—)%

Crab dispersion closure

_ (0x Ox" 9y 0y B
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@ Ideally, two thin crab cavities apart with nm phase advance form a
closed crab dispersion bump

@ In both rings, the crab cavities can not be matched to exactly /2

@ In ESR, the bump has to be closed because vy =~ v,. This is accom-
plished by moving rear side crab to ~ 37 /2 (27 between both crabs)

@ In HSR, the crab dispersion bump is not closed (5° away from 7). Crab
cavity voltages can be adjusted to provide ¢* = (12.5 mrad, 0,0, 0)

@ Exploring the necessity of and options for locally closing crab dispersion
@ Reasonable momentum dispersion constraints at crab cavities to reduce

\‘ their .“ d effe
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Linear Beam Optics — Crab dispersion control

Vertical crabbing
@ Sources: tilted ESR, detector solenoid
@ Vertical crab cavities can provide knobs to control vertical crab disper-
sion. However, (1) hard to match, (2) conflict with impedance budget
@ Skew quadrupoles are feasible and efficient to control vertical crabbing
@ In ESR, the required skew component strength is 1.2 T/m. In HSR, it
may combine with the global decoupling system.
Dynamical control — crab cavity RF noise

@ The crab dispersion changes dynamically due to RF phase and ampli-
tude noise. The transverse emittance growth o 62

@ Compared with HL-LHC, EIC sensitivity to RF noise is 4000 times
higher; the emittance growth tolerance is 3 orders of magnitude higher

@ The RF noise threshold for the HSR will be very hard to achieve. A
dedicated feedback system is needed




Linear Beam Optics — ESR spin rotation

The aim of the spin rotators is: (1) to rotate the spin from the vertical
direction in the arcs to the longitudinal direction at the IPs; (2) to
minimize beam depolarization.

ESR spin rotator composes of solenoids and dipoles

V2
Bend P2
m?)lgiule &~ ' . \ 4 -~ 1 o1
&~ ‘ Long- IP6 ' -
Short- solenoid
solenoid module n
module 0

In dipoles, spin rotated around vertical axis by ¢ = ayf . In solenoids,
spin rotated around longitudinal axis by ¢ = (1 + a)KL

@ One “long” solenoid module for 18 GeV, @1 = 0,92 = @2 = 7/2

@ One "short" solenoid module for 6 GeV, p1 = 11 + ¢ = 7/2

@ Both solenoid modules used for 10 GeV

o Matching for 5 GeV electrons is ongoing
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Dynamic Aperture — HSR overview

@ HSR will reuse arcs of both Yellow and Blue RHIC rings

o Sufficient DA after the linear chromaticity is corrected. More sextupole

families are available for further DA optimization
@ IR magnetic field errors dominate hadron ring DA reduction

@ Tracking with beam-beam: 3¢ drop from head-on to crab collision with

1 unit IR
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Dynamic Aperture — ESR overview

Dynamic aperture and momentum aperture of lower energies lattice are
sufficient. 18 GeV lattice with a 2nd IR is most challenging
@ Optimization goal: 100 in all three planes
@ Fractional tunes close to integer: selected by spin and beam-beam
dynamics
@ Setting the phase advance between IRs to (2n + 1)7/2 helps, but not
sufficient
@ No space for local chromatic compensation
@ The off-momentum fB-beating and the chromaticity from the final fo-
cusing doublet are corrected in the neighboring arc section

Interaction region Arc

90°
’ L L L _ L
x rr r r

Phase trumbone




Dynamic Aperture — ESR 18 GeV tracking results

Bare lattice
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Collective Effects — Overview

In ESR, average current: 2.5 A with bunch charge of 28 nC
@ No single bunch instabilities, component heating needs water cooling
e With a 591 MHz RF system 0, = 7 mm, /[eax = 480 A

@ Large tune spread caused by beam-beam interaction provide Landau
damping for transverse coupled-bunch instability and ion instability

@ Longitudinal damper is needed
In HSR, average current: 1 A
@ RHIC vacuum chamber is not designed for EIC beam

@ Vulnerable to electron cloud instability and high resistive losses from
beam-induced currents

@ The vacuum chamber of the HSR SC magnets and their cold intercon-
nects will be updated with a beam screen to present sufficiently low
impedance and low secondary electron-emission yield (SEY)

\




Collective Effects — ESR impedance budget

@ We have initial designs for main components and wakefield calculations
@ Beam is stable at single bunch current of 2.2 mA required for regular
operation at 2.5 A within 1160 bunches

The total longitudinal wakefield simulated for a 0.3 mm

Components Abbreviation Number Status bunch length at 5 GeV and 10/18 GeV energies.
Bellows BLW 350 v x2 (NEG) 10"
4
Collimator Ramp* CLM 16 v
Horizontal In-Vacuum Collimator HIVC 3 TBD g 2 5GeV
Vertical In-Vacuum Collimator VIvC 3 TBD =0
Crah Cavity CRBCVT 2 v
Beam Position Monitor? BPM 494 v )
Gale Valve? GV 30 v 2 0 2 4 6 8
. . s (mm)
Stripline Kicker? SK 18 v
Main RF Cavity? VT 23 v The total vertical dipole wakefield simulated for a 2 mm
o X bunch length.
Tapered Transition in RF Section TPRD 9? TBD

15
Multipole Chamber Absorber MPABS 292 v 259
Dipole Chamber Absorber DPABS 250 v g 2r
Flange Joints FLNG 1500 TBD 2 15¢
Resistive Wall RW - v =Y
;> 05F
| 1 - SKEKB design v - Included into the total W(s) 0

2 - NSLS-II design

N




Collective Effects — Fundamental crabbing mode

Transverse Crab cavities with big R/Q can lead to transverse coupled
bunch instabilities: high Q@ ~ 10°, and high Sx ~ 1300 m in 275 GeV HSR

0.1 T T T T T

2 particle thin lens sims
5000 particle thin lens sims
0.08 I 2 particle formula

. Re(Z,)/Re(Z,)max

Im(AQ,)

0.04 - | ]

o s . s s
05 04 03 -02 01 0 01 02
AQ,

RF feedback is required on the crab cavities, Q.¢ = 300 for 197 MHz and

.‘ Qe = 600 for 394 MHz
-y




Strong Hadron Cooling — Overview

Luminosity benefits strongly (factor ~ 3 — 10) from cooling the trans-
verse and longitudinal hadron beam emittance

IBS longitudinal and transverse growth time is 2-3 hours. The cooling
time shall be equal to or less than the growth time from all sources
Cooling at 275 GeV and 100 GeV based on Coherent electron Cooling
(CeC); 41 GeV cooling under study.

Low energy cooling (Pre-cooling based on LEReC) is used to obtain
initial parameters of proton beam: must cool the hadron beam normal-
ized vertical emittance from 2.5 um to 0.3 um in 2 hours

«— with SHC

"
5}

Luminosity [10%3 em?s?]

P w/o SHC

60 80 100 120

Center of Mass Energy [GeV]




Summary — Challenges resolved and in progress

Challenges from design parameters: luminosity 103*cm~=2s~1 (factor 100
beyond HERA), both beams of time average polarization > 70%

@ Beam-beam parameters, achievable in simulation

@ Electron bunch replacement, sufficient injection errors

@ Spin rotators design, 6 — 18 GeV, 5 GeV

@ Strong hadron cooling
Challenges from crab cavities

@ Higher-order SBR, tune optimization and 2nd-order harmonic

@ Crab dispersion control, ESR, HSR closure

® RF feedback to cure RF noise and large transverse impedance

@ HSR DA reduction, 1IR with reasonable IR field error
Challenges from 2 IRs

@ ESR Chromatic correction, 100 achieved with 2 IRs
@ Luminosity sharing, bunch filling pattern
& HSR D’A,ESR depolarization...
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Thank you for your attention.
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