EIC Beam Dynamics Challenges

Derong Xu on behalf of EIC Design Team

Brookhaven National Laboratory June 12-17, 2022

Outline

Introduction

Olarization

- 4 Linear Beam Optics
- 5 Dynamic Aperture
- 6 Collective Effects
- Strong Hadron Cooling
- 8 Summary

Introduction — Electron Ion Collider

Science goals

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

Design goals

- \bullet High luminosity: $10^{33}-10^{34}~{\rm cm}^{-2}{\rm s}^{-1}$
- center-of-mass energies: 20 140 GeV
- \bullet Polarized proton and electron beams: 70%
- Large range of hadron species: Proton -Uranium
- Possibility of 2nd IR

HSR — Hadron Storage Ring ESR — Electron Storage Ring RCS — Rapid Cycling Synchrotron

Luminosity — Overview

- $\bullet\,$ Large crossing angle 25 mrad , fast separation to avoid parasitic collision
- Local crab crossing: upstream and downstream crab cavities to restore effective head-on collision to compensate geometric luminosity loss
- \bullet Large beam-beam parameters, $\rm e \sim 0.1, p \sim 0.015,$ combination never experimentally demonstrated
- Flat beam $\sigma_y/\sigma_x = 0.09$ to achieve highest e-p luminosity $10^{34} \, {\rm cm}^{-2} {\rm s}^{-1}$

		Parameter	unit	proton	electron
		Circumference	m	3833.8451	
ion bean	heam	Particle energy	GeV	275	10
	er	Bunch intensity	10^{11}	0.668	1.72
and the second sec		# of Bunches	-	1160	
Bunch crabbing	3unch crabbing Bunch crabbing		mrad	25	
	s na seconda de la constante de	β^* at IP	cm	80/7.2	45/5.6
<u> </u>	$\varphi_{cross} = 25 \text{mrad}$	Beam sizes at IP	μm	95/8	1.5
		Bunch length	cm	6	2
Bunch de-crabbing	Bunch de-crabbing	Energy spread	10^{-4}	6.6	5.5
	Heres	Transverse tunes	-	0.228/0.210	0.08/0.06
		Longitudinal tune	-	0.01	0.069
		BB parameter	-	0.012/0.012	0.07/0.10
		Luminosity	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	10 ³⁴	
		-	and the second		

Luminosity — Synchro-betatron resonances (SBR)

- Crabbed offset, due to sinusoidal kick from the crab cavities, drives higher-order SBR in the proton beam $\Delta x = -\theta_c [\sin(k_c z)/k_c z]$
- $\nu_x = 0.228, \nu_y = 0.210$ to mitigate SBR

2nd order harmonic crab cavity is used to flatten the crabbed offset

Luminosity — Coherent beam-beam effects

Electron tune scan to avoid coherent instability, red: proton H centroid, green: electron H centroid. Electron working point: (0.08, 0.06)

2022, Bangkok, Thailand

IPAC

Luminosity — Collision with two IPs

- A 2nd IR is reserved at IP8 for future upgrade. However, with same beam-beam parameters, sum luminosity $\propto 1/N_{\rm IP}$
- Time sharing, one IR taking data while the other one is idle
- Or luminosity sharing, change bunch filling pattern, so that half bunches collide at IP6, and the other bunches collide at IP8

- The other half electron bunches are shifted by 3 RF buckets
- IP8 should be moved away from IP6 for synchronization
- Each bunch only collides once per turn

Luminosity — Tilted ESR

HSR lies in horizontal plane, while ESR is tilted by $\sim 200~\mu{\rm rad}$

- Resolve interferences between rings, transfer lines, cooler ERL in IR2
- Avoid vertical bends around ring crossing points to preserve polarization
- Effect on dynamics: -4 mrad rotation around s axis before collision, and 4 mrad rotation after collision vertical crabbing needed

Polarization — Overview

The EIC physics program requires highly polarized hadron and electron beams with alternating spin orientation for the electron bunches Polarized hadron beam:

- Improvements of AGS: 70% achieved at extraction
- Four additional Siberian snakes will be installed in HSR:
 - increase polarization transmission for protons on the ramp to 275 GeV to $\sim 100\%$
 - sufficiently suppress spin resonance width for the polarized ³He
- spin rotators based on helical dipoles to transform spin directions Polarized electron beam:
 - 85% longitudinal polarization in the source
 - RCS serves as acceleration and injection at full energy, high periodicity to be free of intrinsic spin resonances
 - Frequent "swap-out" injection to keep time-averaged polarization

Polarization — Depolarization in ESR

- Spin matching of spin rotator optics minimized beam depolarization, especially at 18 GeV
- Spin simulation studies with magnet errors showed that with one interaction region the average polarization of at least 70% is achievable. Studies with two IRs are underway
- Vertical emittance can be achieved using vertical bumps in ESR arcs, with depolarization at an acceptable level

Orbit corrected to rms: $\sim 0.15~{\rm mm},$ coupling corrected to below 0.005. SITROS includes nonlinear sextupole fields and quantum excitation

Assumed quadrupole RMS misalignments

horizontal offset	δx^Q	200 μ m
vertical offset	δy^Q	200 μ m
roll angle	$\delta\psi^Q$	200 μ rad

At 18 ${\rm GeV}$ with 2.5 \min refill time: 16% asymptotic polarization corresponds to 70% average polarization

Polarization — Electron bunch replacement

- Physics program requires bunches with spin "up" and spin "down" (in the arcs) to be stored simultaneously
- Initial polarization \sim 85% decays towards P_{∞} $<\sim$ 50%: Sokolov-Ternov self-polarization and spin diffusion
- Frequent injection is necessary to keep time-averaged polarization
- At 18 GeV, every bunch is replaced (on average) after 2.2 min with RCS cycling rate of 2Hz

Polarization — Electron bunch replacement

0.1% emittance growth when injection on orbit

10

1% emittance growth corresponding to $60\mu\mathrm{m}$ or $0.12\mathrm{mrad}$ injection errors

Linear Beam Optics — IR design

- \bullet Strong focusing at IP, HSR:80/7.2 cm, ESR:45/5.6 cm
- \bullet Crab cavities: high $\beta_{\rm x},$ specific $\Psi_{\rm x},$ and enough installation space
- \bullet Accommodation to detector: 4.5 $\rm m$ rear, 5.0 $\rm m$ forward stay-clear...

Linear Beam Optics — Crab dispersion control

Crab cavities introduce *z*-dependent transverse kick

$$\zeta = \left(\frac{\partial x}{\partial z}, \frac{\partial x'}{\partial z}, \frac{\partial y}{\partial z}\right)^{\mathrm{T}}, \ \zeta_2 = M\zeta_1$$

Crab dispersion closure

- Ideally, two thin crab cavities apart with $n\pi$ phase advance form a closed crab dispersion bump
- In both rings, the crab cavities **can not** be matched to exactly $\pi/2$
- In ESR, the bump has to be closed because $\nu_x \approx \nu_z$. This is accomplished by moving rear side crab to $\sim 3\pi/2$ (2π between both crabs)
- In HSR, the crab dispersion bump is **not** closed (5° away from π). Crab cavity voltages can be adjusted to provide ζ* = (12.5 mrad, 0, 0, 0)
- Exploring the necessity of and options for locally closing crab dispersion
- Reasonable momentum dispersion constraints at crab cavities to reduce their combined effects

Vertical crabbing

- Sources: tilted ESR, detector solenoid
- Vertical crab cavities can provide knobs to control vertical crab dispersion. However, (1) hard to match, (2) conflict with impedance budget
- Skew quadrupoles are feasible and efficient to control vertical crabbing
- $\bullet\,$ In ESR, the required skew component strength is 1.2~T/m. In HSR, it may combine with the global decoupling system.

Dynamical control — crab cavity RF noise

- The crab dispersion changes dynamically due to RF phase and amplitude noise. The transverse emittance growth $\propto \theta_c^2$
- Compared with HL-LHC, EIC sensitivity to RF noise is 4000 times higher; the emittance growth tolerance is 3 orders of magnitude higher
- The RF noise threshold for the HSR will be very hard to achieve. A dedicated feedback system is needed

Linear Beam Optics — ESR spin rotation

The aim of the spin rotators is: (1) to rotate the spin from the vertical direction in the arcs to the longitudinal direction at the IPs; (2) to minimize beam depolarization.

ESR spin rotator composes of solenoids and dipoles

- In dipoles, spin rotated around vertical axis by $\psi = a\gamma\theta$. In solenoids, spin rotated around longitudinal axis by $\varphi = (1 + a)KL$
- One "long" solenoid module for 18 GeV, $\varphi_1=0, \psi_2=\varphi_2=\pi/2$
- One "short" solenoid module for 6 GeV, $\varphi_1 = \psi_1 + \psi_2 = \pi/2$
- Both solenoid modules used for 10 GeV
- Matching for 5 GeV electrons is ongoing

Dynamic Aperture — HSR overview

- HSR will reuse arcs of both Yellow and Blue RHIC rings
- Sufficient DA after the linear chromaticity is corrected. More sextupole families are available for further DA optimization
- IR magnetic field errors dominate hadron ring DA reduction

$$\Delta B_y + \mathrm{i}\Delta B_x = B(R_{\mathrm{ref}}) \left[10^{-4} \sum_{n=0}^{N_{\mathrm{max}}} (b_n + \mathrm{i}a_n) \frac{(x + \mathrm{i}y)^n}{R_{\mathrm{ref}}^n} \right]$$

• Tracking with beam-beam: 3σ drop from head-on to crab collision with 1 unit IR field errors (due to crab dispersion and IR field errors)

Dynamic Aperture — ESR overview

Dynamic aperture and momentum aperture of lower energies lattice are sufficient. 18 ${
m GeV}$ lattice with a 2nd IR is **most** challenging

- Optimization goal: 10σ in all three planes
- Fractional tunes close to integer: selected by spin and beam-beam dynamics
- Setting the phase advance between IRs to $(2n+1)\pi/2$ helps, but not sufficient
- No space for local chromatic compensation
- The off-momentum β -beating and the chromaticity from the final focusing doublet are corrected in the neighboring arc section

Dynamic Aperture — ESR 18 GeV tracking results

With beam-beam, crab cavities, detector solenoid, and crab dispersion correction by skew quadrupoles

 10σ with $\sigma_{\delta} = 0.1\%$ is **achieved** for the 18 GeV lattice with 2 IRs

IPAC 2022, Bangkok, Thailand

Electron-Ion Collider

Bare lattice

Collective Effects — Overview

In ESR, average current: 2.5 $\rm A$ with bunch charge of 28 $\rm nC$

- No single bunch instabilities, component heating needs water cooling
- \bullet With a 591 $\rm MHz$ RF system $\sigma_z=7~\rm mm,~\textit{I}_{peak}=480~\rm A$
- Large tune spread caused by beam-beam interaction provide Landau damping for transverse coupled-bunch instability and ion instability
- Longitudinal damper is needed
- In HSR, average current: $1\ {\rm A}$
 - RHIC vacuum chamber is not designed for EIC beam
 - Vulnerable to electron cloud instability and high resistive losses from beam-induced currents
 - The vacuum chamber of the HSR SC magnets and their cold interconnects will be updated with a beam screen to present sufficiently **low** impedance and **low** secondary electron-emission yield (SEY)

Collective Effects — ESR impedance budget

- We have initial designs for main components and wakefield calculations
- \bullet Beam is stable at single bunch current of 2.2 $\rm mA$ required for regular operation at 2.5 A within 1160 bunches

Abbreviation	Number	Status
BLW	350	🗸 x2 (NEG)
CLM	16	1
HIVC	3	TBD
VIVC	3	TBD
CRBCVT	2	1
BPM	494	1
GV	30	1
SK	18	1
CVT	23	1
TPRD	9?	TBD
MPABS	292	1
DPABS	250	1
FLNG	1500	TBD
RW	-	1
	Abbreviation BLW CLM HIVC VIVC CRBCVT BPM GV SK CVT TPRD MPABS DPABS FLNG RW	Abbreviation Number BLW 350 CLM 16 HIVC 3 VIVC 3 CRBCVT 2 BPM 494 GV 30 SK 18 CVT 23 TPRD 9? MPABS 292 DPABS 250 FLNG 1500 RW -

- 1 SKEKB design
- 2 NSLS-II design

The total longitudinal wakefield simulated for a 0.3 $\rm mm$ bunch length at 5 $\rm GeV$ and 10/18 $\rm GeV$ energies.

The total vertical dipole wakefield simulated for a $2\ \mathrm{mm}$ bunch length.

IPAC 2022, Bangkok, Thailand

Collective Effects — Fundamental crabbing mode

Transverse Crab cavities with big R/Q can lead to transverse coupled bunch instabilities: high $Q \sim 10^6$, and high $\beta_x \sim 1300$ m in 275 GeV HSR

RF feedback is required on the crab cavities, $Q_{\rm eff}=300$ for 197 $\rm MHz$ and $Q_{\rm eff}=600$ for 394 $\rm MHz$

Strong Hadron Cooling — Overview

- Luminosity benefits strongly (factor $\approx 3-10)$ from cooling the transverse and longitudinal hadron beam emittance
- IBS longitudinal and transverse growth time is 2-3 hours. The cooling time shall be equal to or less than the growth time from all sources
- \bullet Cooling at 275 ${\rm GeV}$ and 100 ${\rm GeV}$ based on Coherent electron Cooling (CeC); 41 ${\rm GeV}$ cooling under study.
- Low energy cooling (Pre-cooling based on LEReC) is used to obtain initial parameters of proton beam: must cool the hadron beam normalized vertical emittance from 2.5 μm to 0.3 μm in 2 hours

Summary — Challenges resolved and in progress

Challenges from design parameters: luminosity $10^{34} {\rm cm}^{-2} {\rm s}^{-1}$ (factor 100 beyond HERA), both beams of time average polarization > 70%

- Beam-beam parameters, achievable in simulation
- Electron bunch replacement, sufficient injection errors
- Spin rotators design, 6-18 GeV, 5 GeV
- Strong hadron cooling

Challenges from crab cavities

- Higher-order SBR, tune optimization and 2nd-order harmonic
- Crab dispersion control, ESR, HSR closure
- RF feedback to cure RF noise and large transverse impedance
- HSR DA reduction, 1IR with reasonable IR field error

Challenges from 2 IRs

- ESR Chromatic correction, 10σ achieved with 2 IRs
- Luminosity sharing, bunch filling pattern
- HSR DA,ESR depolarization...

IPAC 2022, Bangkok, Thailand -

Acknowledgement

Many thanks to all our EIC colleagues and collaborators at BNL, TJNAF, ORNL, LBNL, SLAC, FNAL, MSU, ODU and Cornell University

E. C. Aschenauer, G. Bassi, J. Beebe-Wang, S. Benson, J. S. Berg, W. Bergan, M. Blaskiewicz, A. Blednykh, J. M. Brennan, S. Brooks, K. A. Brown, Y. Cai, Z. Conway, J. R. Delayen, K. A. Drees, A. V. Fedotov, W. Fischer, C. Folz, B.R.P. Gamage, D. Gassner, E. Gianfelice-Wendt, J. Grames, X. Gu, R. Gupta, Y. Hao, C. Hetzel, G. Hoffstaetter, D. Holmes, H. Huang, H. Lovelace III, J. Kewisch, Y. Li, F. Lin, C. Liu, Y. Luo, G. Mahler, D. Marx, F. Meot, T. Michalski, M. Minty, C. Montag, V. Morozov, S. Nayak, E. Nissen, Y. Nosochkov, R. B. Palmer, B. Parker, S. Peggs, B. Podobedov, J. Preble, V. Ptitsyn, J. Qiang, V. H. Ranjbar, R. Rimmer, G. Robert-Demolaize, D. Sagan, M. Sangroula, T. Satogata, S. Seletskiy, A. Seryi, M. Signorelli, S. D. Silva, K. S. Smith, G. Stupakov, M. Sullivan, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J. Tuozzolo, J. Unger, S. Verdu-Andres, E. Wang, D. Weiss, F. J. Willeke, M. Wiseman, H. Witte, W. Wittmer, Q. Wu, W. Xu, A. Zaltsman

Thank you for your attention.

IPAC 2022, Bangkok, Thailand 🕠