Author: Karppinen, M.
Paper Title Page
THPOMS012 Explorative Studies of an Innovative Superconducting Gantry 2966
 
  • M.G. Pullia, M. Donetti, E. Felcini, G. Frisella, A. Mereghetti, A. Mirandola, A. Pella, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • L. Dassa, M. Karppinen, D. Perini, D. Tommasini, M. Vretenar
    CERN, Meyrin, Switzerland
  • E. De Matteis, L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • C. Kurfürst, M.T.F. Pivi, M. Stock
    EBG MedAustron, Wr. Neustadt, Austria
  • S. Mariotto, M. Prioli
    INFN-Milano, Milano, Italy
  • L. Piacentini, A. Ratkus, T. Torims, J. Vilcans
    Riga Technical University, Riga, Latvia
  • L. Sabbatini, A. Vannozzi
    LNF-INFN, Frascati, Italy
  • S. Uberti
    Università di Brescia, Brescia, Italy
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The Heavy Ion Therapy Research Integration plus (HITRIplus) is a European project that aims to integrate and propel research and technologies related to cancer treatment with heavy ions beams. Among the ambitious goals of the project, a specific work package includes the design of a gantry for carbon ions, based on superconducting magnets. The first milestone to achieve is the choice of the fundamental gantry parameters, namely the beam optics layout, the superconducting magnet technology, and the main user requirements. Starting from a reference 3T design, the collaboration widely explored dozens of possible gantry configurations at 4T, aiming to find the best compromise in terms of footprint, capital cost, and required R&D. We present here a summary of these configurations, underlying the initial correlation between the beam optics, the mechanics, and the main superconducting dipoles design: the bending field (up to 4 T), combined function features (integrated quadrupole), magnet aperture (up to 90 mm), and angular length (30°-45°). The resulting main parameters are then listed, compared, and used to drive the choice of the best gantry layout to be developed in HITRIplus.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS012  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS028 Performance Study of the NIMMS Superconducting Compact Synchrotron for Ion Therapy with Strongly Curved Magnets 3014
SUSPMF129   use link to see paper's listing under its alternate paper code  
 
  • H.X.Q. Norman, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • M. Karppinen
    CERN, Meyrin, Switzerland
  • H.L. Owen
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.L. Owen
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Delivery of heavy ion therapy currently utilises normal conducting synchrotrons. For the future generation of clini- cal facilities, the accelerator footprint must be reduced while adopting beam intensities above 1 × 1010 particles per spill for more efficient, effective treatment. The Next Ion Medical Machine Study (NIMMS) is investigating the feasibility of a compact (27 m circumference) superconducting synchrotron, based on 90° alternating-gradient, canted-cosine-theta mag- nets to meet these criteria. The understanding of the impact of the higher order multipole fields of these magnets on the beam dynamics of the ring is crucial for optimisation of the design and to assess its performance for treatment. We analyse the electromagnetic model of a curved superconducting magnet to extract its non-linear components. Preliminary as- sessment is performed using MADX/PTC. Further scope, involving cross-referencing with other particle tracking codes, is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS028  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS049 Energy Comparison of Room Temperature and Superconducting Synchrotrons for Hadron Therapy 3080
 
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • E. Benedetto, M. Karppinen, M.R. Khalvati, M. Vretenar, R. van Weelderen
    CERN, Meyrin, Switzerland
  • M.G. Pullia, G. Venchi
    CNAO Foundation, Pavia, Italy
  • L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • M. Sapinski
    PSI, Villigen PSI, Switzerland
  • M. Sorbi
    Universita’ degli Studi di Milano & INFN, Segrate, Italy
  • R.U. Valente
    La Sapienza University of Rome, Rome, Italy
 
  The yearly energy requirements of normal conducting (NC) and superconducting (SC) magnet options of a new hadron therapy (HT) facility are compared. Special reference is made to the layouts considered for the proposed SEEIIST facility. Benchmarking with the NC CNAO HT centre in Pavia (Italy) was carried out. The energy comparison is centred on the different synchrotron solutions, assuming the same injector and lines in the designs. The beam current is more than a factor 10 higher with respect to present generation facilities. This allows efficient ’multi-energy extraction’ (MEE), which shortens the therapy treatment and is needed especially in the SC option, because of the slow magnet ramping time. Hence, power values of the facility in the traditional mode were converted into MEE ones, for the sake of a fair stepwise comparison between NC and SC magnets. The use of cryocoolers and a liquefier are also compared, for synchrotron refrigeration. This study shows that a NC facility operated in MEE mode requires the least average energy, followed by the SC synchrotron solution with a liquefier, while the most energy intensive solution is the SC one with cryocoolers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS049  
About • Received ※ 20 May 2022 — Revised ※ 17 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)