Paper | Title | Page |
---|---|---|
TUOXSP1 | Origin and Mitigation of the Beam-Induced Surface Modifications of the LHC Beam Screens | 780 |
|
||
All over Run 2, the LHC beam-induced heat load on the cryogenic system exhibited a wide scattering along the ring. Studies ascribed the heat source to electron cloud build-up, indicating an unexpected high Secondary Electron Yield (SEY) of the beam screen surface in some LHC regions. The inner copper surface of high and low heat load beam screens, extracted during the Long Shutdown 2, was analysed. On the low heat load ones, the surface was covered with the native Cu2O oxide, while on the high heat load ones CuO dominated at surface, and it exhibited a very low carbon coverage. Such chemical modifications increase the SEY and inhibit a proper conditioning of the affected surfaces. Following this characterisation, the mechanisms for CuO build-up in the LHC beam pipe were investigated on a newly commissioned cryogenic system allowing electron irradiation, surface chemical characterisation by X-ray Photoelectron Spectroscopy and SEY measurements on samples held below 15 K. In parallel, curative solutions against the presence of CuO in the LHC beam screens were explored, which could be implemented in-situ to recover a proper conditioning and lower the beam-induced heat load. | ||
Slides TUOXSP1 [2.669 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXSP1 | |
About • | Received ※ 17 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOXSP2 | Analysis of Low RRR SRF Cavities | 783 |
SUSPMF110 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. This work was supported by the University of Chicago. Recent findings in the superconducting radio-frequency (SRF) community have shown that introducing certain impurities into high-purity niobium can improve quality factors and accelerating gradients. Success has been found in nitrogen-doping, diffusion of the native oxide into the niobium surface, and thin films of alternate superconductors atop a niobium bulk cavity. We question why some impurities improve RF performance while others hinder it. The purpose of this study is to characterize the impurity profile of niobium with a low residual resistance ratio (RRR) and correlate these impurities with the RF performance of low RRR cavities so that the mechanism of recent impurity-based improvements can be better understood and improved upon. Additionally, we perform a low temperature bake on the low RRR cavity to evaluate how the intentional addition of oxygen to the RF layer affects performance. We have found that low RRR cavities experience low temperature-dependent BCS resistance behavior more prominently than their high RRR counterparts. The results of this study have the potential to unlock a new understanding on SRF materials. |
||
Slides TUOXSP2 [1.495 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXSP2 | |
About • | Received ※ 08 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 25 June 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOXSP3 | Evaluation of Geometrical Precision and Surface Roughness Quality for the Additively Manufactured Radio Frequency Quadrupole Prototype | 787 |
|
||
A multidisciplinary collaboration within the I.FAST project teamed-up to develop additive manufacturing (AM) technology solutions for accelerators. The first prototype of an AM pure-copper radio frequency quadrupole (RFQ) has been produced, corresponding to 1/4 of a 4-vane RFQ*. It was optimised for production with state-of-the-art laser powder bed fusion technology. Geometrical precision and roughness of the critical surfaces were measured. Alt-hough the obtained values were beyond standard RFQ specifications, these first results are promising and con-firmed the feasibility of AM manufactured complex cop-per accelerator cavities. Therefore, further post-processing trials have been conducted with the sample RFQ to im-prove surface roughness. Algorithms for the AM techno-logical processes have also been improved, allowing for higher geometrical precision. This resulted in the design of a full 4-vane RFQ prototype. At the time of the paper submission the full-size RFQ is being manufactured and will undergo through the stringent surface quality meas-urements. This paper is discussing novel technological developments, is providing an evaluation of the obtained surface roughness and geometrical precision as well as outlining the potential post-processing scenarios along with future tests plans.
* Torims T, et al. First Proof-of-Concept Prototype of an Additive Manufactured Radio Frequency Quadrupole. Instruments. 2021; 5(4):35. https://doi.org/10.3390/instruments5040035 |
||
Slides TUOXSP3 [10.031 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXSP3 | |
About • | Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 10 July 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |