MC5: Beam Dynamics and EM Fields
D03: Calculations of EM fields - Theory and Code Developments
Paper Title Page
MOPOTK018 Parallelization of Radia Magnetostatics Code 481
SUSPMF067   use link to see paper's listing under its alternate paper code  
 
  • A. Banerjee
    SBU, Stony Brook, New York, USA
  • J. Chavanne, G. Le Bec
    ESRF, Grenoble, France
  • O.V. Chubar
    BNL, Upton, New York, USA
  • J.P. Edelen, C.C. Hall, B. Nash
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: Work supported by the US DOE BES SBIR grant No. DE-SC0018556.
Radia 3D magnetostatics code has been used for the design of insertion devices for light sources over more than two decades. The code uses the magnetization integral approach that is efficient for solving permanent magnet and hybrid magnet structures. The initial version of the Radia code was sequential, its core written in C++ and interface in the Mathematica language. This paper describes a new Python-interfaced parallel version of Radia and its applications. The parallelization of the code was implemented on C++ level, following a hybrid approach. Semi-analytical calculations of interaction matrix elements and resultant magnetic fields were parallelized using the Message Passing Interface, whereas the parallelization of the "relaxation" procedure (solving for magnetizations in volumes created by subdivision) was executed using a shared memory method based on C++ multithreading. The parallel performance results are encouraging, particularly for magnetic field calculation post relaxation where a ~600 speedup with respect to sequential execution was obtained. The new parallel Radia version facilitates designs of insertion devices and lattice magnets for novel particle accelerators.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK018  
About • Received ※ 20 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK059 Implementation of the Vico-Greengard-Ferrando Poisson Solver in Synergia2 600
 
  • C.S. Park
    KUS, Sejong, Republic of Korea
 
  Computation of space charge fields in accelerator simulations is one of the most challenging tasks. The algorithm proposed by Hockney and Eastwood is the fastest method for numerically solving Poisson equations with open boundaries and has been implemented in various accelerator simulation codes. Recently, Vico-Greengard-Ferrando proposed a new hybrid fast algorithm for computing volume potentials. The new algorithm is promising higher accuracy and faster error convergence than that of Hockney-Eastwood. This study presents the implementation of the Vico-Greengard-Ferrando solver in Synergia and shows a comparison of results with these Poisson solvers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK059  
About • Received ※ 10 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK060 An Induction-Type Septum Magnet for the EIC Complex 603
 
  • N. Tsoupas, D. Holmes, C. Liu, I. Marneris, C. Montag, V. Ptitsyn, V.H. Ranjbar, J.E. Tuozzolo
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The electron Ion Collider (eIC) project* has been approved by the Department of Energy to be built at the site of Brookhaven National Laboratory (BNL). Part of the eIC accelerator complex and more specifically the Rapid Cycling Syncrotron (RCS) which accelerates the electron beam up to 18 GeV and the electron Storage Ring (eSR) which stores the electron beam bunces for collisions with the hadrons, will be built inside the tunnel of the Relativistic Heavy Ion Collider (RHIC)**. This paper provides information on the electromagnetic design of the septa magnets which will be employed to inject and extract the beam to and from the two synchrotrons used for the acceleration and storage of the electron beam bunches. The type of the septum is of induction type made o laminated iron and it is similar to the one described in ref.[3] The electromagnetic study is performed by the use of the transient module of the OPERA computer code***.
* https://ww.bnl.gov/eic/
** A. Zhuravlev, et al. PIPAC2013, Shanghai, China
*** https://www.3ds.com/products-services/simulia/products/opera/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK060  
About • Received ※ 05 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK062 Numerical Calibration of the Bead-Pull Setup for Beam Coupling Impedance Evaluation 607
 
  • D.M.F. El Dali, E. Métral, C. Zannini
    CERN, Meyrin, Switzerland
  • G. De Michele, S. Fanella
    AVO-ADAM, Meyrin, Switzerland
 
  The bead-pull method is a commonly used electromagnetic field measurement technique exploited to tune a radiofrequency cavity to achieve design specifications. The frequency of a resonant cavity is perturbed by inserting a metallic or dielectric bead. For a given electromagnetic field, the amplitude of the perturbation depends only on the geometry of the perturbing object. Therefore, the calibration of the bead can be done in different resonant structures without loss of generality. In this paper, a method to perform an accurate calibration of the bead with electromagnetic simulations is proposed. Compared to the common practice of measuring a reference cavity, the flexibility given by the simulation method to study different bead shapes and sizes could be advantageous to optimize the measurement setup. A calibrated bead-pull setup allows to quantify the electric field and, therefore, the shunt impedance of the resonant modes of the cavity. As experimental benchmark, the beam coupling impedance measured with the calibrated bead-pull setup is compared with electromagnetic simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK062  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK065 Minimising Transverse Multipoles in Accelerating RF Cavities via Azimuthally Modulated Designs 610
SUSPMF066   use link to see paper's listing under its alternate paper code  
 
  • L.M. Wroe
    JAI, Oxford, United Kingdom
  • R. Apsimon
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • M. Dosanjh
    CERN, Meyrin, Switzerland
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  In this paper, we build upon previous work of designing RF structures that support modes with tailored multipolar fields by applying the concept to negate the transverse multipoles in accelerating RF cavities caused by the incorporation of waveguide slots and tuning deformations. We outline a systematic method for designing structures that minimise these transverse multipoles and present analysis of simulations of two different minimisation designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK065  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS050 Rigorous Approach for Calculation of Radiation of a Charged Particle Bunch Exiting an Open-Ended Dielectrically Loaded Waveguide 757
 
  • S.N. Galyamin
    Saint Petersburg State University, Saint Petersburg, Russia
  • S. Baturin
    ITMO University, Saint Petersburg, Russia
 
  Funding: Work supported by Russian Science Foundation (Grant No. 18-72-10137).
Beam-driven radiation sources based on open-ended waveguide structures with dielectric filling are of essential interest due to their attractive possibilities to generate high-power narrow-band Cherenkov radiation*. An important problem here is to effectively extract the radiation from the waveguide to the open space. Therefore, further development of this scheme requires rigorous mathematical approach describing the interaction of both charged particle bunch and produced radiation with the open end of a waveguide. In this report, we present the corresponding analytical approach based on our recent paper** where diffraction of a waveguide mode at the open end of a dielectrically loaded waveguide has been rigorously investigated.
* D. Wang et al., Rev. Sci. Instruments, Vol. 89, 093301 (2018).
** S.N. Galyamin et al., IEEE Trans. Microwave Theory Techn., Vol. 69, 2429-2438 (2021).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS050  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)