MC1: Circular and Linear Colliders
A19: Electron - Hadron Colliders
Paper Title Page
WEIXGD1 EIC Beam Dynamics Challenges 1576
 
  • D. Xu, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, W.F. Bergan, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, C. Montag, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, Virginia, USA
  • A. Blednykh, Y. Luo, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The Elec­tron Ion Col­lider aims to pro­duce lu­mi­nosi­ties of 1034 cm-2s-1 . The ma­chine will op­er­ate over a broad range of col­li­sion en­er­gies with highly po­lar­ized beams. The co­ex­is­tence of highly ra­dia­tive elec­trons and non­ra­dia­tive ions pro­duce a host of unique ef­fects. Strong hadron cool­ing will be em­ployed for the final fac­tor of 3 lu­mi­nos­ity boost.  
slides icon Slides WEIXGD1 [3.952 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIXGD1  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOXGD2 Electron Accelerator Lattice Design for LHeC with Permanent Magnets 1587
 
  • D. Trbojevic, J.S. Berg, S.J. Brooks
    BNL, Upton, New York, USA
  • S.A. Bogacz
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work performed under the Contract Number DE-AC02-98CH10886 with the auspices of US Department of Energy
We pre­sent a new ’green en­ergy’ ap­proach to the En­ergy Re­cov­ery Linac (ERL) the fu­ture Elec­tron Ion Col­lider at LHeC using sin­gle beam line made of very strong fo­cus­ing com­bined func­tion per­ma­nent mag­nets and the Fixed Field Al­ter­nat­ing Lin­ear Gra­di­ent (FFA-LG) prin­ci­ple. We are bas­ing our de­sign on re­cent very suc­cess­ful com­mis­sion­ing re­sults of the Cor­nell Uni­ver­sity and Brookhaven Na­tional Lab­o­ra­tory ERL Test Ac­cel­er­a­tor-CBETA.
 
slides icon Slides WEOXGD2 [19.845 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOXGD2  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST020 EIC Hadron Spin Rotators 1734
 
  • V. Ptitsyn, J.S. Berg
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider in BNL will col­lide po­lar­ized elec­trons with po­lar­ized pro­tons or po­lar­ized 3He ions. Spin ro­ta­tors will be used to cre­ate the lon­gi­tu­di­nal beam po­lar­iza­tion at a lo­ca­tion of the EIC ex­per­i­men­tal de­tec­tor. He­li­cal spin ro­ta­tors uti­lized for po­lar­ized pro­ton op­er­a­tion in pre­sent RHIC will be reused in the EIC Hadron Stor­age Ring. How­ever, due to a sig­nif­i­cant dif­fer­ence of EIC and RHIC in­ter­ac­tion re­gion lay­outs, the EIC spin ro­ta­tor arrange­ment has sev­eral chal­lenges. Turn­ing on the EIC spin ro­ta­tors may lead to a sig­nif­i­cant spin tune shift. To pre­vent beam de­po­lar­iza­tion dur­ing the spin ro­ta­tor turn-on, Siber­ian Snakes have to be tuned si­mul­ta­ne­ously with ro­ta­tors. The EIC spin ro­ta­tors must be able to op­er­ate in a wide en­ergy range for po­lar­ized pro­tons and po­lar­ized 3He ions. The paper pre­sents the chal­lenges of spin ro­ta­tor usage in the EIC and reme­dies as­sur­ing the suc­cess­ful op­er­a­tion with the ro­ta­tors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST020  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT034 Reconfiguration of RHIC Straight Sections for the EIC 1916
 
  • C. Liu, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, S. Verdú-Andrés, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Elec­tron-Ion Col­lider (EIC) will be built in the ex­ist­ing Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) tun­nel with the ad­di­tion of elec­tron ac­cel­er­a­tion and stor­age rings. The two RHIC rings will be re­con­fig­ured as a sin­gle Hadron Stor­age Ring (HSR) for ac­cel­er­at­ing and stor­ing ion beams. The pro­ton beam en­ergy will be raised from 255 to 275 GeV to achieve the de­sired cen­ter-of-mass en­ergy range: 20’140 GeV. It is also manda­tory to op­er­ate the HSR with a con­stant rev­o­lu­tion fre­quency over a large en­ergy range (41’275 GeV for pro­tons) to syn­chro­nize with the Elec­tron Stor­age Ring (ESR). These and other re­quire­ments/chal­lenges dic­tate mod­i­fi­ca­tions to RHIC ac­cel­er­a­tors. This re­port gives an overview of the mod­i­fi­ca­tions to the RHIC straight sec­tions to­gether with their in­di­vid­ual chal­lenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT034  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT035 Optics for Strong Hadron Cooling in EIC HSR-IR2 1920
 
  • S. Peggs, W.F. Bergan, D. Bruno, Y. Gao, D. Holmes, R.F. Lambiase, C. Liu, H. Lovelace III, G.J. Mahler, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, E. Wang, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • S.V. Benson, T.J. Michalski
    JLab, Newport News, Virginia, USA
  • F. Micolon
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC001 2704, and by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
In­ser­tion Re­gion 2 (IR2) of the Rel­a­tivis­tic Heavy Ion Col­lider will be mod­i­fied to ac­com­mo­date a Strong Hadron Cool­ing fa­cil­ity in the Hadron Stor­age Ring (HSR) of the Elec­tron-Ion Col­lider (EIC). This paper de­scribes the cur­rent proof-of-prin­ci­ple de­sign of HSR-IR2 - lay­out, op­ti­cal per­for­mance, de­sign method­ol­ogy, and en­gi­neer­ing re­quire­ments. It also de­scribes the chal­lenges and op­por­tu­ni­ties in the fu­ture de­vel­op­ment of the HSR-IR2 de­sign, in order to fur­ther op­ti­mize Strong Hadron Cool­ing per­for­mance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT035  
About • Received ※ 02 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT036 Dependence of Beam Size Growth on Macro-Particle’s Initial Actions in Strong-Strong Beam-Beam Simulation for the Electron-Ion Collider 1924
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, J. Kewisch, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • B.R. Gamage, H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Elec­tron-Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lide po­lar­ized high en­ergy elec­tron beams with hadron beams with de­sign lu­mi­nosi­ties up to 1×1034cm-2s-1 in the cen­ter mass en­ergy range of 20-140 GeV. We sim­u­lated the planned elec­tron-pro­ton col­li­sion of flat beams with Par­ti­cle-In-Cell (PIC) based Pois­son solver in strong-strong beam-beam sim­u­la­tion. We ob­served a much larger pro­ton emit­tance growth rate than that from weak-strong sim­u­la­tion. To un­der­stand the nu­mer­i­cal noises fur­ther, we cal­cu­late the beam size growth rate of macro-par­ti­cles as func­tion of their ini­tial lon­gi­tu­di­nal and trans­verse ac­tions. This method is ap­plied to both strong-strong and weak-strong sim­u­la­tions. The pur­pose of this study is to iden­tify which group of macro-par­ti­cles con­tributes most of the ar­ti­fi­cial emit­tance growth in strong-strong beam-beam sim­u­la­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT036  
About • Received ※ 22 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT037 Dynamic Aperture Evaluation for EIC Hadron Storage Ring with Crab Cavities and IR Nonlinear Magnetic Field Errors 1927
 
  • Y. Luo, J.S. Berg, W. Fischer, X. Gu, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, H. Witte, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The elec­tron ion col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lider po­lar­ized high en­ergy elec­tron beams with hadron beams with lu­mi­nosi­ties up to 1034 cm-2s-1 in the cen­ter mass en­ergy range of 20-140 GeV. In this ar­ti­cle, we eval­u­ate the dy­namic aper­ture of the Hadron Stor­age Ring (HSR) with sym­plec­tic el­e­ment-by-el­e­ment track­ing. Crab cav­i­ties, non­lin­ear mag­netic field er­rors, and weak-strong beam-beam in­ter­ac­tion are in­cluded. We com­pared the dy­namic aper­ture from head-on col­li­sion to cross­ing-an­gle col­li­sion and found the rea­son for the dy­namic aper­ture drop. We also stud­ied the field error tol­er­ances for IR mag­nets and for some par­tic­u­lar mag­nets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT037  
About • Received ※ 22 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT038 Summary of Numerical Noise Studies for Electron-Ion Collider Strong-Strong Beam-Beam Simulation 1931
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, J. Kewisch, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • B.R. Gamage, H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The Elec­tron-Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lide po­lar­ized high en­ergy elec­tron beams with hadron beams, reach­ing lu­mi­nosi­ties up to 1×1034cm-2s-1 in cen­ter mass en­ergy range of 20-140 GeV. We stud­ied the planned elec­tron-pro­ton col­li­sions using a Par­ti­cle-In-Cell (PIC) based Pois­son solver in strong-strong beam-beam sim­u­la­tion. We ob­served a much larger pro­ton emit­tance growth rate than in weak-strong sim­u­la­tion. To un­der­stand the nu­mer­i­cal noise and its im­pact on strong-strong sim­u­la­tion re­sults, we car­ried out ex­ten­sive stud­ies to iden­tify all pos­si­ble causes for ar­ti­fi­cial emit­tance growth and quan­tify their con­tri­bu­tions. In this ar­ti­cle, we sum­ma­rize our study ac­tiv­i­ties and find­ings. This work will help us bet­ter un­der­stand the sim­u­lated emit­tance growth and the lim­its of the PIC based strong-strong beam-beam sim­u­la­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT038  
About • Received ※ 19 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT039 Fine Decoupling Test and Simulation Study to Maintain a Large Transverse Emittance Ratio in Hadron Storage Rings 1935
 
  • Y. Luo, I. Blackler, M. Blaskiewicz, W. Fischer, A. Marusic, C. Montag, T.C. Shrey, D. Xu
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
I In pre­vi­ous and ex­ist­ing hadron stor­age rings, the hor­i­zon­tal and ver­ti­cal emit­tances are nor­mally the same or very close. For the Hadron Stor­age Ring (HSR) of the Elec­tron-Ion Col­lider (EIC), the de­sign pro­ton trans­verse emit­tance ratio is 10:1. To main­tain this large emit­tance ratio, we need to have an on­line fine de­cou­pling sys­tem to pre­vent trans­verse emit­tance ex­change. For this pur­pose, we car­ried out fine de­cou­pling ex­per­i­ments in the Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) and re­viewed its pre­vi­ous op­er­a­tional data. An­a­lyt­i­cal pre­dic­tion and nu­mer­i­cal sim­u­la­tion are pre­formed to es­ti­mate how small the global cou­pling co­ef­fi­cient should be to main­tain a 10:1 emit­tance ratio.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT039  
About • Received ※ 19 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT040 Numerical Noise Error of Particle-In-Cell Poisson Solver for a Flat Gaussian Bunch 1939
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Elec­tron-Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lider po­lar­ized high en­ergy elec­tron beams with hadron beams with lu­mi­nos­ity up to 1×1034cm-2s-1 in the cen­ter mass en­ergy range of 20-140 GeV. We sim­u­lated the planned elec­tron-pro­ton col­li­sion of flat beams with Par­ti­cle-In-Cell (PIC) based Pois­son solver in strong-strong beam-beam sim­u­la­tion. We ob­served a much larger pro­ton emit­tance growth rate than that from weak-strong sim­u­la­tion. To bet­ter un­der­stand the emit­tance growth rate from the strong-strong sim­u­la­tion, we com­pare the beam-beam kicks be­tween the PIC method and the an­a­lyt­i­cal cal­cu­la­tion and cal­cu­late the RMS vari­a­tion in beam-beam kicks among 1000 sets of ran­dom Gauss­ian par­ti­cle dis­tri­b­u­tions. The im­pacts of macro-par­ti­cle num­ber, grid num­ber, and bunch flat­ness are also stud­ied.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT040  
About • Received ※ 23 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT042 Designing the EIC Electron Storage Ring Lattice for a Wide Energy Range 1946
 
  • D. Marx, J.S. Berg, J.S. Berg, J. Kewisch, Y. Li, Y. Li, C. Montag, V. Ptitsyn, V. Ptitsyn, S. Tepikian, F.J. Willeke, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • B.R. Gamage, V.S. Morozov, V.S. Morozov
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter, G.H. Hoffstaetter, D. Sagan, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-SC0012704, by Jefferson Science Associates, LLC, under Contract No. DE-AC05-06OR23177, by UT-Battelle, LLC, under contract DE-AC05-00OR22725, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) will col­lide elec­trons with hadrons at cen­ter-of-mass en­er­gies up to 140 GeV (in the case of elec­tron-pro­ton col­li­sions). A 3.8-kilo­me­ter elec­tron stor­age ring is being de­signed, which will store elec­trons with a range of en­er­gies up to 18 GeV for col­li­sions at one or two in­ter­ac­tion points. At en­er­gies up to 10 GeV the arcs will be tuned to pro­vide 60 de­gree phase ad­vance per cell in both planes, whereas at top en­ergy of 18 GeV a 90 de­gree phase ad­vance per cell will be used, which largely com­pen­sates for the hor­i­zon­tal emit­tance in­crease with en­ergy. The op­tics must be matched at three sep­a­rate en­er­gies, and the dif­fer­ent phase-ad­vance re­quire­ments in both the arc cells and the straight sec­tions make this chal­leng­ing. More­over, the spin ro­ta­tors must ful­fill re­quire­ments for po­lar­iza­tion and spin match­ing at widely dif­fer­ent en­er­gies while sat­is­fy­ing tech­ni­cal con­straints. In this paper these chal­lenges and pro­posed so­lu­tions are pre­sented and dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT042  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT043 Dynamic Aperture of the EIC Electron Storage Ring 1950
 
  • Y.M. Nosochkov, Y. Cai
    SLAC, Menlo Park, California, USA
  • J.S. Berg, J. Kewisch, Y. Li, D. Marx, C. Montag, S. Tepikian, H. Witte
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515, by Brookhaven Science Associates, LLC under Contract DE-SC0012704, and by the Ernest Courant Traineeship in Accelerator Science and Technology Award No. DE-SC0020375.
The Elec­tron Ion Col­lider (EIC) is under de­sign at Brookhaven Na­tional Lab­o­ra­tory. The EIC aims at pro­vid­ing high lu­mi­nos­ity and high po­lar­iza­tion col­li­sions for a large range of beam en­er­gies. Dy­namic aper­ture (DA) of the EIC Elec­tron Stor­age Ring (ESR) must be suf­fi­ciently large in both trans­verse and mo­men­tum di­men­sions. The lat­ter is a chal­lenge due to low-beta op­tics in up to two in­ter­ac­tion re­gions (IR). We have de­vel­oped an ad­vanced tech­nique for ef­fi­cient non-lin­ear chro­matic­ity com­pen­sa­tion com­pat­i­ble with the dif­fer­ent ESR lat­tice con­fig­u­ra­tions at dif­fer­ent en­er­gies. The so­lu­tion for the most chal­leng­ing lat­tice with two IRs at 18 GeV is pre­sented. The lat­tice is then eval­u­ated with mag­net er­rors, where the error tol­er­ances are de­ter­mined for reach­ing the de­sired DA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT043  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT044 Electron-Ion Collider Design Status 1954
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J.P. Jamilkowski, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, D. Xu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, Virginia, USA
  • A. Blednykh, D.M. Gassner, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) is being de­signed for con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory. Ac­tiv­i­ties have been fo­cused on beam-beam sim­u­la­tions, po­lar­iza­tion stud­ies, and beam dy­nam­ics, as well as on ma­tur­ing the lay­out and lat­tice de­sign of the con­stituent ac­cel­er­a­tors and the in­ter­ac­tion re­gion. The lat­est de­sign ad­vances will be pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT045 Transverse Electron Beam Tails and Beam Lifetime in the EIC Electron Storage Ring 1958
 
  • C. Montag
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704.
While for most stor­age ring de­sign ac­tiv­i­ties it is suf­fi­cient to as­sume a Gauss­ian dis­tri­b­u­tion of the beam par­ti­cles, a more de­tailed pre­dic­tion of the pop­u­la­tion in the trans­verse tails is nec­es­sary to pre­dict the beam life­time in a given aper­ture. Dom­i­nant processes that re­sult in non-Gauss­ian dis­tri­b­u­tions are the beam-beam in­ter­ac­tion in a col­lider as well as beam-gas scat­ter­ing. Sim­u­la­tions to de­ter­mine the re­quired aper­tures and vac­uum lev­els in the EIC elec­tron stor­age ring will be pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT045  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT047 Beam Optics of the Injection/Extraction and Beam Transfer in the Electron Rings of the EIC Project 1964
 
  • N. Tsoupas, D. Holmes, C. Liu, C. Montag, V. Ptitsyn, V.H. Ranjbar, J. Skaritka, J.E. Tuozzolo, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) pro­ject* has been ap­proved by the De­part­ment of En­ergy to be built at the site of Brookhaven Na­tional Lab­o­ra­tory (BNL). The goal of the pro­ject is the col­li­sion of en­er­getic (of many GeV/amu) ion species with elec­tron bunches of en­er­gies up to 18 GeV. The EIC in­cludes two elec­tron rings, the Rapid Cy­cling Syn­chro­tron (RCS) which ac­cel­er­ates the elec­tron beam up to 18 GeV, and the Elec­tron Stor­age Ring (ESR) which stores the elec­tron beam for col­li­sions with hadron beam, both to be in­stalled in the same tun­nel as the Hadron Stor­age Ring (HSR). This paper dis­cusses the lay­out and the beam op­tics of the in­jec­tion/ex­trac­tion beam lines the elec­tron rings and the beam op­tics of the trans­fer line from the RCS to the ESR ring.
* https://www.bnl.gov/eic/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT047  
About • Received ※ 05 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT049 Beam-Beam Interaction for Tilted Storage Rings 1968
 
  • D. Xu, D. Holmes, C. Montag, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  In the Elec­tron-Ion Col­lider (EIC) de­sign, to avoid ver­ti­cal orbit bumps in the Elec­tron Stor­age Ring (ESR) at some cross­ing points with Hadron Stor­age Ring (HSR) to pre­serve the elec­tron po­lar­iza­tion, we plan to tilt the ESR plane by 200 ’rad with an axis con­nect­ing IP6 and IP8. In this ar­ti­cle, we study the beam-beam in­ter­ac­tion when two rings are not in the same plane. The Lorentz boost for­mula is de­rived and the re­quired ver­ti­cal crab­bing strength is cal­cu­lated to com­pen­sate the dy­namic ef­fect The strong-strong sim­u­la­tions are per­formed to val­i­date the the­ory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT049  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT050 Detector Solenoid Compensation in the EIC Electron Storage Ring 1972
 
  • D. Xu
    BNL, Upton, New York, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  The Elec­tron Ion Col­lider (EIC) uses crab cav­i­ties to re­store the geo­met­ri­cal lu­mi­nos­ity loss. Due to the space lim­i­ta­tion, the de­tec­tor so­le­noid can­not be com­pen­sated lo­cally. This paper pre­sents the lat­tice de­sign to com­pen­sate the de­tec­tor so­le­noid with­out in­ter­fer­ing the crab cav­i­ties. The skew quadrupoles are em­ployed to avoid ad­di­tional crab cav­i­ties. The cor­rec­tion scheme is checked by beam-beam sim­u­la­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT050  
About • Received ※ 19 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS051 Spin Matching for the EIC’s Electrons 2369
 
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
  • J.A. Crittenden, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J. Kewisch
    BNL, Upton, New York, USA
 
  The Elec­tron-Ion Col­lider (EIC) at Brookhaven Na­tional Lab­o­ra­tory will pro­vide spin-po­lar­ized col­li­sions of elec­tron and pro­tons or light ion beams. In order to max­i­mize the elec­tron po­lar­iza­tion and re­quire less fre­quent beam re-in­jec­tions to re­store the po­lar­iza­tion level, the sto­chas­tic de­po­lar­iz­ing ef­fects of syn­chro­tron ra­di­a­tion must be min­i­mized via spin match­ing. In this study, Bmad was used to per­form first order spin match­ing in the Elec­tron Stor­age Ring (ESR) of the EIC. Spin matches were ob­tained for the ro­ta­tor sys­tems and for a ver­ti­cal chi­cane, in­serted as a ver­ti­cal emit­tance cre­ator. Monte Carlo spin track­ing with ra­di­a­tion was then per­formed to an­a­lyze the ef­fects of the spin match­ing on the po­lar­iza­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS051  
About • Received ※ 31 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS057 Simulation Studies and Machine Learning Applications at the Coherent electron Cooling experiment at RHIC 2387
 
  • W. Lin, J.A. Crittenden, G.H. Hoffstaetter, M.A. Sampson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Y.C. Jing
    BNL, Upton, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Funding: Work supported by the U.S. National Science Foundation under Award PHY-1549132, and by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Co­her­ent elec­tron cool­ing is a novel cool­ing tech­nique which cools high-en­ergy hadron beams rapidly by am­pli­fy­ing the mod­u­la­tion in­duced by hadrons in elec­tron bunches. The Co­her­ent elec­tron cool­ing (CeC) ex­per­i­ment at Brookhaven Na­tional Lab­o­ra­tory (BNL) is a proof-of-prin­ci­ple test fa­cil­ity to demon­strate this tech­nique. To achieve ef­fi­cient cool­ing per­for­mance, elec­tron beams gen­er­ated in the CeC need to meet strict qual­ity stan­dards. In this work, we first pre­sent sen­si­tiv­ity stud­ies of the low en­ergy beam trans­port (LEBT) sec­tion, in prepa­ra­tion for build­ing a sur­ro­gate model of the LEBT line in the fu­ture. We also pre­sent pre­lim­i­nary test re­sults of a ma­chine learn­ing (ML) al­go­rithm de­vel­oped to im­prove the ef­fi­ciency of slice-emit­tance mea­sure­ments in the CeC di­ag­nos­tic line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS057  
About • Received ※ 06 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)