Author: Vannozzi, A.
Paper Title Page
MOPOMS019 The New SPARC_LAB RF Photo-Injector 671
 
  • D. Alesini, M.P. Anania, M. Bellaveglia, A. Biagioni, F. Cardelli, G. Costa, M. Del Franco, G. Di Pirro, L. Faillace, M. Ferrario, G. Franzini, A. Gallo, A. Giribono, L. Piersanti, L. Sabbatini, A. Stella, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • A. Battisti, E. Chiadroni, G. Di Raddo, A. Liedl, V.L. Lollo, L. Pellegrino, R. Pompili, S. Romeo, V. Shpakov, C. Vaccarezza, F. Villa
    LNF-INFN, Frascati, Italy
  • M. Carillo, E. Chiadroni
    Sapienza University of Rome, Rome, Italy
  • A. Cianchi, M. Galletti
    Università di Roma II Tor Vergata, Roma, Italy
 
  A new RF photo-injector has been designed, realized and successfully installed at the SPARC_LAB facility (INFN-LNF, Frascati, Rome). It is based on a 1.6 cell RF gun fabricated with the new brazing free technology recently developed at the National Laboratories of Frascati. The electromagnetic design has been optimized to have a full compensation of the dipole and quadrupole field components introduced by the coupling hole with an improvement of the effective pumping speed with two added pumping ports. The gun is overcoupled (\beta=2) to reduce the filling time and to allow the operation with short RF pulses. The overall injector integrates a new solenoid with a remote control of the transverse position and a variable skew quadrupole for the compensation of residual quadrupole field components. It also allows an on axis laser injection system with the last mirror in air, and the possibility of a future integration of an X/C band cavity linearizer. In the paper we report the main characteristics of the electromagnetic and mechanical design and the low and high power test results that shows the extremely good perfomances of the new device.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS019  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS020 Dark Current Studies for a High Gradient SW C-Band RF Gun 675
 
  • F. Cardelli, D. Alesini, L. Faillace, A. Giribono, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • G. Di Raddo
    LNF-INFN, Frascati, Italy
  • T.G. Lucas
    PSI, Villigen PSI, Switzerland
 
  It is now well-established that for the generation of very high brightness beams, required for fourth generation light sources, it is highly advantageous to use injectors based on Radiofrequency photo-guns with very high peak electric fields on the cathode (>120 MV/m). This very high surface electric field leads to the generation of undesirable electrons due to the field emission effect. The emitted electrons can be captured and propagate along the Linac forming a dark current beam, leading to background radiation that can damage the instrumentation and radioactivate components. Consequently, it is important that the emission of these electrons, and their subsequent transportation, is carefully evaluated. Recently, in the framework of the I-FAST project, a high gradient, standing wave, C-band (5712 MHz) RF photogun has been designed and will be realized soon. In this paper, the results of dark current studies and simulations are illustrated. The transport efficiency and the spectrum of the dark current have been evaluated by Particle-In-Cell simulations for different cathode peak field values considering also the effect of the focusing solenoid on the dark current beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS020  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS021 The New C Band Gun for the Next Generation RF Photo-Injectors 679
 
  • D. Alesini, M. Ferrario, A. Giribono, A. Gizzi, L. Piersanti, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • F. Cardelli, G. Di Raddo, L. Faillace, S. Lauciani, A. Liedl, L. Pellegrino, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • G. Castorina
    AVO-ADAM, Meyrin, Switzerland
  • M. Croia
    ENEA Casaccia, Roma, Italy
  • L. Ficcadenti
    INFN-Roma, Roma, Italy
  • G. Pedrocchi
    SBAI, Roma, Italy
 
  Funding: European Union’s Horizon 2020 Research and Innovation programme under GA No 101004730 and INFN Commission V.
RF photo-injectors are widely used in modern facilities, especially in FEL, as very low-emittance and high-brightness electron sources. Presently, the RF technology mostly used for RF guns is the S band (3 GHz) with typical cathode peak fields of 80-120 MV/m and repetition rates lower than 120 Hz. There are solid reasons to believe that the frequency step-up from S band to C band (6 GHz) can provide a strong improvement of the beam quality due to the potential higher achievable cathode field (>160 MV/m) and higher repetition rate (that can reach the kHz level). In the contest of the European I.FAST project, a new C band gun has been designed and will be realized and tested. It is a 2.5 cell standing wave cavity with a four port mode launcher, designed to operate with short RF pulses (<300 ns) and cathode peak field larger than 160 MV/m. In the paper we present the electromagnetic and thermo-mechanical design and the results of the prototyping activity and rf measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS021  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK054 Proposal of a VHEE Linac for FLASH Radiotherapy 2903
SUSPMF120   use link to see paper's listing under its alternate paper code  
 
  • L. Giuliano, F. Bosco, M. Carillo, D. De Arcangelis, A. De Gregorio, L. Ficcadenti, D. Francescone, G. Franciosini, M. Migliorati, A. Mostacci, L. Palumbo, V. Patera, A. Sarti
    Sapienza University of Rome, Rome, Italy
  • D. Alesini, A. Gallo, A. Vannozzi
    INFN/LNF, Frascati, Italy
  • M. Behtouei, L. Faillace, B. Spataro
    LNF-INFN, Frascati, Italy
  • M.G. Bisogni, F. Di Martino, J.H. Pensavalle
    INFN-Pisa, Pisa, Italy
  • G.A.P. Cirrone, G. Cuttone, G. Torrisi
    INFN/LNS, Catania, Italy
  • V. Favaudon, A. Patriarca
    Institut Curie - Centre de Protonthérapie d’Orsay, Orsay, France
  • S. Heinrich
    Institut Curie, Centre de Recherche, Orsay, France
 
  Translation of electron FLASH radiotherapy in clinical practice requires the use of high energy accelerators to treat deep tumours and Very High Electron Energy (VHEE) could represent a valid technique to achieve this goal. In this sce- nario, a VHEE FLASH linac is under study at the University La Sapienza of Rome (Italy) in collaboration with the Italian Institute for Nuclear Research (INFN) and the Curie Insti- tute (France). Here we present the preliminary results of a compact C-band system aiming to reach an high accelerating gradient and an high pulse current necessary to deliver high dose per pulse and ultra-high dose rate required for FLASH effect. We propose a system composed of a low energy high current injector linac followed by a modular section of high accelerating gradient structures. CST code is used to define the required LINAC’s RF parameters and beam dynamics simulations are performed using T-Step, ASTRA and GPT tracking codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK054  
About • Received ※ 17 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS012 Explorative Studies of an Innovative Superconducting Gantry 2966
 
  • M.G. Pullia, M. Donetti, E. Felcini, G. Frisella, A. Mereghetti, A. Mirandola, A. Pella, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • L. Dassa, M. Karppinen, D. Perini, D. Tommasini, M. Vretenar
    CERN, Meyrin, Switzerland
  • E. De Matteis, L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • C. Kurfürst, M.T.F. Pivi, M. Stock
    EBG MedAustron, Wr. Neustadt, Austria
  • S. Mariotto, M. Prioli
    INFN-Milano, Milano, Italy
  • L. Piacentini, A. Ratkus, T. Torims, J. Vilcans
    Riga Technical University, Riga, Latvia
  • L. Sabbatini, A. Vannozzi
    LNF-INFN, Frascati, Italy
  • S. Uberti
    Università di Brescia, Brescia, Italy
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The Heavy Ion Therapy Research Integration plus (HITRIplus) is a European project that aims to integrate and propel research and technologies related to cancer treatment with heavy ions beams. Among the ambitious goals of the project, a specific work package includes the design of a gantry for carbon ions, based on superconducting magnets. The first milestone to achieve is the choice of the fundamental gantry parameters, namely the beam optics layout, the superconducting magnet technology, and the main user requirements. Starting from a reference 3T design, the collaboration widely explored dozens of possible gantry configurations at 4T, aiming to find the best compromise in terms of footprint, capital cost, and required R&D. We present here a summary of these configurations, underlying the initial correlation between the beam optics, the mechanics, and the main superconducting dipoles design: the bending field (up to 4 T), combined function features (integrated quadrupole), magnet aperture (up to 90 mm), and angular length (30°-45°). The resulting main parameters are then listed, compared, and used to drive the choice of the best gantry layout to be developed in HITRIplus.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS012  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)