Author: Schulte, D.
Paper Title Page
MOPOTK031 10 TeV Center of Mass Energy Muon Collider 515
 
  • K. Skoufaris, C. Carli, D. Schulte
    CERN, Meyrin, Switzerland
 
  A Muon collider can provide unique opportunities in high-energy physics as an energy frontier machine. However, a number of challenges have to be addressed during the design process primarily due to the short lifetime of muons. In this work, a lattice for a §I10{TeV} center-of-mass energy collider is presented. Some of the more important challenges faced are: the design of an interaction region with β* values of the order of a few millimeters and an adequate chromatic compensation without sacrificing the physical and dynamic aperture, the flexibility to control the momentum compaction factor and the radiation generated where neutrinos from muons decays reach the surface. These issues are addressed with the development of a new chromatic correction scheme, the extensive use of flexible momentum compaction factor cells and the efficient control of the optical parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK031  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIZSP2 The Muon Collider 821
 
  • D. Schulte
    CERN, Meyrin, Switzerland
 
  Muon colliders are considered nowadays in the landscape of future lepton colliders. Since the MAP project in USA, an important effort is being made in Europe to identify the neccesary R&D to advance towards a Conceptual Design Report in the next years. The talk will review the status of the technologies and accelerator designs and will present the R&D plans.  
slides icon Slides TUIZSP2 [15.641 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIZSP2  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST001 Radiation Load Studies for Superconducting Dipole Magnets in a 10 TeV Muon Collider 1671
 
  • D. Calzolari, C. Carli, B. Humann, A. Lechner, G. Lerner, F. Salvat Pujol, D. Schulte, K. Skoufaris
    CERN, Meyrin, Switzerland
  • B. Humann
    TU Vienna, Wien, Austria
 
  Among the various future lepton colliders under study, muon colliders offer the prospect of reaching the highest collision energies. Despite the promising potential of a multi-TeV muon collider, the short lifetime of muons poses a severe technological challenge for the collider design. In particular, the copious production of decay electrons and positrons along the collider ring requires the integration of continuous radiation absorbers inside superconducting magnets. The absorbers are needed to avoid quenches, reduce the heat dissipation in the cold mass and prevent magnet failures due to long-term radiation damage. In this paper, we present FLUKA shower simulations assessing the shielding requirements for high-field magnets of a 10 TeV muon collider. We quantify in particular the role of synchrotron photon emission by decay electrons and positrons, which helps in dispersing the energy carried by the decay products. For comparison, selected results for a 3 TeV muon collider are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST001  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS046 Machine Learning-Based Modeling of Muon Beam Ionization Cooling 2354
 
  • E. Fol, D. Schulte
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Surrogate modeling can lead to significant improvements of beam dynamics simulations in terms of computational time and resources. Application of supervised machine learning, using collected simulation data allows to build surrogate models which can estimate beam parameters evolution based on the provided cooling channel design. The created models help to understand the correlations between different lattice components and the importance of specific beam properties for the cooling performance. We present the application of surrogate modeling to enhance final muon cooling design studies, demonstrating the potential of such approach to be integrated into the design and optimization of other components of future colliders.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS046  
About • Received ※ 07 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS047 Automated Design and Optimization of the Final Cooling for a Muon Collider 2358
 
  • E. Fol, D. Schulte, B. Stechauner
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Schieck
    HEPHY, Wien, Austria
 
  The desired beam emittance for a Muon collider is several orders of magnitude less than the one of the muon beams produced at the front-end target. Ionization cooling has been demonstrated as a suitable technique for the reduction of the muon beam emittance. Final cooling, as one of the most critical stages of the muon collider complex, necessitates careful design and optimization in order to control the beam dynamics and ensure efficient emittance reduction. We present an optimization framework based on ICool simulation code and application of different optimization algorithms, to automatize the choice of optimal initial muon beam parameters and simultaneous tuning of numerous final cooling components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS047  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK052 Muon Collider Graphite Target Studies and Demonstrator Layout Possibilities at CERN 2895
 
  • F.J. Saura Esteban, M. Calviani, D. Calzolari, R. Franqueira Ximenes, A.M. Krainer, A. Lechner, R. Losito, D. Schulte
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Muon colliders offer enormous potential for research of the particle physics frontier. Leptons can be accelerated without suffering large synchrotron radiation losses. The International Muon Collider Collaboration is considering 3 and 10 TeV (CM) machines for a conceptual stage. In the core of the Muon Collider facility lays a MW class production target, which will absorb a high power (1 and 3 MW) proton beam to produce muons via pion decay. The target must withstand high dynamic thermal loads induced by 2 ns pulses at 5-50 Hz. Also, operational reliability must be guaranteed to reduce target exchanges to a minimum. Several technologies for these systems are being studied in different laboratories. We present in this paper the results of a preliminary feasibility study of a graphite-based target, and the different layouts under study for a demonstrator target complex at CERN. Synergies with advanced nuclear systems are being explored for the development of a liquid metal target.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK052  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)