Author: Schneidmiller, E.
Paper Title Page
TUPOPT014 The Status of the SASE3 Variable Polarization Project at the European XFEL 1029
 
  • S. Karabekyan, S. Abeghyan, M. Bagha-Shanjani, S. Casalbuoni, U. Englisch, W. Freund, G. Geloni, J. Grünert, S. Hauf, C. Holz, D. La Civita, J. Laksman, D. Mamchyk, M.P. Planas, F. Preisskorn, S. Serkez, H. Sinn, M. Wuenschel, M. Yakopov, C. Youngman
    EuXFEL, Schenefeld, Germany
  • P. Altmann, A. Block, W. Decking, L. Fröhlich, O. Hensler, T. Ladwig, D. Lenz, D. Lipka, R. Mattusch, N. Mildner, E. Negodin, J. Prenting, F. Saretzki, M. Schlösser, F. Schmidt-Föhre, E. Schneidmiller, M. Scholz, D. Thoden, T. Wamsat, T. Wilksen, T. Wohlenberg, M.V. Yurkov
    DESY, Hamburg, Germany
  • J. Bahrdt
    HZB, Berlin, Germany
  • M. Brügger, M. Calvi, S. Danner, R. Ganter, L. Huber, A. Keller, C. Kittel, X. Liang, S. Reiche, M.S. Schmidt, T. Schmidt, K. Zhang
    PSI, Villigen PSI, Switzerland
  • D.E. Kim
    PAL, Pohang, Republic of Korea
  • Y. Li
    IHEP, People’s Republic of China
 
  The undulator systems at the European XFEL consist of two hard X-ray systems, SASE1 and SASE2, and one soft X-ray system, SASE3. All three systems are equipped with planar undulators using permanent neodymium magnets. These systems allow the generation of linearly polarized radiation in the horizontal plane. In order to generate variable polarization radiation in the soft X-ray range, an afterburner is currently being implemented behind the SASE3 planar undulator system. It consists of four APPLE-X helical undulators. The project, called SASE 3 Variable Polarization, is close to being put into operation. All four helical undulators have been installed in the tunnel during the 2021-2022 winter shutdown. This paper describes the status of the project and the steps toward its commissioning. It also presents lessons learned during the implementation of the project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT014  
About • Received ※ 02 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOXSP3 Path to High Repetition Rate Seeding: Combining High Gain Harmonic Generation with an Optical Klystron 2411
 
  • G. Paraskaki, E. Ferrari, L. Schaper, E. Schneidmiller
    DESY, Hamburg, Germany
  • E. Allaria
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  External seeding in combination with harmonic generation has become a hot topic in the field of high gain free-electron lasers (FELs) since it allows delivery of superior FEL radiation characterized by, for example, full coherence and unprecedented shot-to-shot stability. At low repetition rate machines operating at few 10 Hz, novel experiments have been realized already, however, at superconducting machines, current laser technology does not support exploiting the full repetition rate available. One way to overcome this problem is to reduce the requirements in seed laser power: here, an optical klystron based high gain harmonic generation (HGHG) setup is proposed to reduce the laser peak power requirements by orders of magnitude, enabling operation at drastically increased repetition rates. We report simulation results based on the seeded beamline concept of the FLASH2020+ project. Among other topics, the effect of a linear electron beam energy chirp on this setup will be discussed.  
slides icon Slides THOXSP3 [1.502 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THOXSP3  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)