Path to High Repetition Rate Seeding: Combination of High Gain Harmonic Generation with an Optical Klystron

Georgia Paraskaki, E. Allaria, E. Ferrari, W. Hillert, L. Schaper, E. Schneidmiller

THOXSP3 IPAC22, 16-06-2022

Outline

Introduction to seeded FELs and the need for high repetition rate seeding

- The optical-klystron high-gain harmonic generation (HGHG) FEL
 - > The layout
 - Simulation results of OK HGHG
 - Without e-beam energy chirp
 - With e-beam energy chirp

Summary

The high-gain FEL

Self-amplified spontaneous emission

Simulated with Genesis 1.3 v4

- Wavelength tunability
- ✓ Hard x-rays possible
- MHz repetition rate possible
- × Poor longitudinal coherence
- X Shot-to-shot fluctuations

The high-gain FEL

External seeding and harmonic generation

Simulated with Genesis 1.3 v4

- ✓ Longitudinal coherence
- Shot-to-shot stability
- Shorter saturation length
- Control over the FEL radiation properties
- Synchronization of FEL pulse to seed laser

- Highest repetition rateShortest possible wavelength
 - Wavelength tunability

Requirements on seed lasers:

- Hundreds MW of peak power
- Shortest possible wavelength
- fs duration
- Pulse energy stability
- Wavelength stability
- Wavelength tunability

Х

Why high repetition rate?

Science shapes the future of FELs

Copyright: European XFEL / Blue Clay Studios

Copyright: European XFEL / Marius Schmidt

Full coherence & high rep. rate:

- will tremendously increase the average flux
- will improve statistics
- will maintain stability and coherence

Combining the standard high gain harmonic generation with an optical klystron scheme to achieve high repetition rate seeding

Standard high gain harmonic generation

Standard HGHG

The optical klystron

The optical klystron

The optical klystron (OK) high gain harmonic generation

Simulation results

Comparison of an OK-HGHG to a standard HGHG scheme

Can we reduce the seed laser power and still achieve the same output FEL pulse properties?

Optimizing for 8% bunching at minimum seed power

Significantly lower seed power and slightly higher energy spread are required with the optical klystron

		n=8 →	n=15
Seed power	OK HGHG	0.041 MW →	0.26 MW
Seed power	Standard HGHG	21 MW \rightarrow	83 MW

Optimizing for 8% bunching at minimum energy spread

Lower seed power and higher energy spread are required with the optical klystron

		n=8 →	n=15
Seed power	OK HGHG	0.041 MW →	0.26 MW
Seed power	Standard HGHG	$21 \text{ MW} \rightarrow$	83 MW

Output FEL radiation

after 4th undulator segment

Simulation results OK-HGHG and standard HGHG *with a linear e-beam energy chirp*

Is the linear chirp detrimental to the output FEL pulses, or can we recover their properties by appropriately optimizing ?

OK HGHG - Initial distribution

OK HGHG - Compression

OK HGHG - After chicanes

OK HGHG - After compression

Optical klystron HGHG with a linear energy chirp

Optical klystron HGHG with a linear energy chirp

	BW	rms	energy	
Without chirp	8.1 10 ⁻⁴	22.2 fs	26.6 µJ	
With chirp	7.9 10 ⁻⁴	21.5 fs	24.2 µJ	

Standard HGHG with a linear energy chirp

Standard HGHG with a linear energy chirp

	FWHM relative BW	Pulse duration rms	Pulse energy
Without chirp	8.7 10 ⁻⁴	18.9 fs	26.6 µJ
With chirp	7.5 10-4	20.7 fs	28.6 µJ

Summary

Optical-klystron based HGHG \rightarrow 2 to 3 orders of magnitude lower peak power

- \circ relaxes damage threshold \checkmark
- \circ increases **repetition rate** of seeded radiation \checkmark
- \circ decreases the wavelength of seeded radiation \checkmark
- \circ can be immediately tested in existing FEL beamlines \checkmark
- \circ Electron bunches with linear energy chirp can be used \checkmark

Thank you for your attention!

Questions before the coffee break?

ENTERNIT IT CUTTINE

ERAELER ET ENERGEN