Author: Rainer, R.S.
Paper Title Page
MOPOTK055 Designing Linear Lattices for Round Beam in Electron Storage Rings Using SLIM 592
 
  • Y. Li, R.S. Rainer
    BNL, Upton, New York, USA
 
  Funding: This research used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office ofScience by Brookhaven National Laboratory under Contract No. DE-SC0012704.
For some synchrotron light source beamline applications, a round beam is preferable to a flat one. A conventional method of obtaining round beam in an electron storage ring is to shift its tune close to a linear difference resonance. The linearly coupled beam dynamics is analyzed with perturbation theories, which have certain limitations. In this paper, we adopt the Solution by LInear Matrices (SLIM) analysis to calculate exact beam sizes to design round beam lattices. The SLIM analysis can deal with a generally linearly coupled accelerator lattice. The effects of various coupling sources on beam emittances and sizes can be studied within a self-consistent frame. Both the on- and off-resonance schemes to obtain round beams are explained with examples. Commonly used radiator devices, such as planar wigglers and undulators, can be incorporated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK055  
About • Received ※ 16 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK056 Data-Driven Chaos Indicator for Nonlinear Dynamics and Applications on Storage Ring Lattice Design 596
 
  • Y. Li, R.S. Rainer
    BNL, Upton, New York, USA
  • Y. Jiao, J. Wan
    IHEP, Beijing, People’s Republic of China
  • A. Liu
    Purdue University, West Lafayette, Indiana, USA
 
  Funding: This research mainly used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.
A data-driven chaos indicator concept is introduced to characterize the degree of chaos for nonlinear dynamical systems. The indicator is represented by the prediction accuracy of surrogate models established purely from data. It provides a metric for the predictability of nonlinear motions in a given system. When using the indicator to implement a tune-scan for a quadratic Henon map, the main resonances and their asymmetric stop-band widths can be identified. When applied to particle transportation in a storage ring, as particle motion becomes more chaotic, its surrogate model prediction accuracy decreases correspondingly. Therefore, the prediction accuracy, acting as a chaos indicator, can be used directly as the objective for nonlinear beam dynamics optimization. This method provides a different perspective on nonlinear beam dynamics and an efficient method for nonlinear lattice optimization. Applications in dynamic aperture optimization are demonstrated as real world examples.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK056  
About • Received ※ 16 May 2022 — Accepted ※ 12 June 2022 — Issue date ※ 03 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)