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Abstract

A data-driven chaos indicator concept is introduced to

characterize the degree of chaos for nonlinear dynamical

systems. The indicator is represented by the prediction ac-

curacy of surrogate models established purely from data. It

provides a metric for the predictability of nonlinear motions

in a given system. When using the indicator to implement a

tune-scan for a quadratic Hénon map, the main resonances

and their asymmetric stop-band widths can be identiĄed.

When applied to particle transportation in a storage ring, as

particle motion becomes more chaotic, its surrogate model

prediction accuracy decreases correspondingly. Therefore,

the prediction accuracy, acting as a chaos indicator, can be

used directly as the objective for nonlinear beam dynamics

optimization. This method provides a diferent perspective

on nonlinear beam dynamics and an eicient method for non-

linear lattice optimization. Applications in dynamic aperture

optimization are demonstrated as real world examples.

INTRODUCTION

It is well-known that the predictability of motion in a

nonlinear dynamical system is closely associated with its

degree of chaos. Given an initial condition, although its

motion is deterministic, its long-term prediction might not

be quantitatively accurate because numerical errors can be

cumulative and ampliĄed. The Lyapunov exponent [1], i.e.,

the exponential growth of separation of inĄnitesimally close

trajectories, is often used as a chaos indicator to characterize

the sensitivity of chaotic motion to its initial condition.

Consider a diferent scenario: an unknown nonlinear dy-

namical system is encapsulated into a blackbox and only an

ensemble of trajectories (input and output data) are available.

Comparing actual trajectories to interpolated trajectories is

one way to gauge chaos. A typical method to interpolate

from known trajectories is to build a surrogate model with

machine learning techniques. A surrogate model needs to be

established Ąrst, then predictions can be made by evaluating

trajectories with given initial conditions. This procedure is

known as Şsupervised learningŤ [2]. To validate the model,

the data is often randomly split into two clusters: a large

training set and a small testing set. A model is then con-

structed from the training set. The performance of the model,

i.e., the prediction accuracy, is measured by comparing the

testing data against its prediction. The performance of the
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model depends on the type and complexity of the model,

the volume of training data, the algorithm used for training,

etc. Nevertheless, the prediction accuracy depends greatly

on the degree of chaos. Therefore, an intuitive method for

detecting chaos directly, purely from data is possible. In

other words, predictability itself can act as a chaos indicator.

From our studies we observed that by using the predictabil-

ity of less-complex surrogate models, and a small volume

of training data, some nonlinear behaviors in a dynamical

system can be well characterized.

Surrogate models have been widely used in studying non-

linear dynamical systems [3Ű8], including charged particle

motion in modern accelerators [9Ű15]. These models are

obtained by training on either simulated data or experimental

data, which have a high computational demand or require

complicated experimental processing. If models can predict

the dynamical system properties accurately with reduced

resource requirements, they can be used for more eicient

applications, such as optimization problems. Improving the

prediction accuracy is the highest priority in these appli-

cations. In contrast to these existing approaches, the main

advantage of using data-driven chaos indicators is that the

requirement on the absolute accuracy of surrogate models

is less demanding, and therefore can be structured with less

complexity and data.

DATA-DRIVEN CHAOS INDICATOR FOR

HÉNON MAP

The well-studied quadratic Hénon map, as shown in

Eq. (1), is used as an example to demonstrate how to con-

struct a data-driven chaos indicator for tune-scanning. It

represents a thin sextupole kick followed by a linear rotation

in a 2-dimensional phase space,(
x

p

)
n+1

=

(
cos 2πν sin 2πν

− sin 2πν cos 2πν

) (
x

p − λx2

)
n

, (1)

where, n is a non-negative integer, ν is known as the linear

tune of the transformation, and the sextupole strength λ is

set as one for this demonstration. We assume the map in

encapsulated as a blackbox with its tune as the control knob.

For a given tune, some known trajectories that start with

initial conditions (x0, p0) (input data) within a speciĄc area,

end with (xn, pn) (output data) after a limited number of

turns. Based on the data, we can extract some parameters to

characterize its long-term stability such as, the location of

resonance lines and their stop-band widths, the relative size

of the stable region, etc. This is accomplished by carrying
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out a tune-scan. A tune-scan can be used to compare a

nonlinear systemŠs behavior at diferent linear tunes. At

each given tune, some trajectories are produced from the

blackbox. Most of them (around 80Ű90%) are used to train

a surrogate model with a polynomial regression algorithm,

(
x

p

)
n

=

(
a0 a1 a2 a3 a4 · · ·

b0 b1 b2 b3 b4 · · ·

)
©­­­­­­­­­­«

1

x

p

x2

xp

p2

...

ª®®®®®®®®®®¬0

. (2)

Here, the 7th order polynomials are used. The rest, 10Ű

20% of the data, is used as a testing set for performance

validation. The validation is done by comparing the testing

data against their model predictions (Fig. 1). Quantitatively,

the prediction accuracy is measured with the mean squared

errors (MSE) between the predictions and the true values. It

also serves as the data-driven chaos indicator.

Figure 1: Prediction performance of 7th-order polynomial

surrogate model for the Hénon map.

The tune-scan result is illustrated in Fig. 2, in which the

modelŠs prediction performance is shown as the blue line

with error bars. For each tune, the data was re-sampled

randomly into diferent training/testing sets, multiple times

(also known as the cross-validation technique). The shuling

of data can avoid selecting data that is trapped in a speciĄc

resonance, preventing the degree of chaos from being under-

or over-estimated. The error bars represent the statistical

Ćuctuations with diferent re-samplings. Due to quadratic

perturbation, the worst model prediction occurs at ν = 1
3

as

expected, which corresponds to a strong 3rd-order resonance

line. This resonance also has the widest stop-band width

(approximated by the width of half-height of peak). Besides
1
3
, some other high order resonances at ν = 1

4
, 1

5
, even 1

7

are visible with this chaos indicator. For comparison, a

long-term (2,048 turns) transformation starting from a wide

initial condition of the x and p was computed. Its loss (i.e.,

unstable trajectory) rate as the function of the tune is also

shown as the red solid line in Fig. 2. The data-driven chaos

indicator observed appears to be highly correlated with the

loss rate of long-term tracking.

It is interesting to note that an asymmetric stop-band width

is detectable with this chaos indicator in Fig. 2. The appear-

Figure 2: Prediction performance of a polynomial surrogate

model (blue line with error bars) vs. loss rate (solid red) of

Hénon map at diferent tunes.

ance of the asymmetry is due to amplitude dependent detun-

ing. It behaves diferently when the linear tune is slightly of

the resonance line as shown in Fig. 3. When the linear tune

is below the ( 1
3
)− resonance (in the left side), its amplitude-

dependent tunes drift away from the resonance (dashed line).

Therefore, the motions are less chaotic, and the left stop-

band width is narrow. But when the linear tune is above

the ( 1
3
)+ (in the right side), its amplitude-dependent tune

merges to the resonance quickly (solid line), so the motions

are more chaotic, and the stopband width at the right side is

correspondingly wide. This asymmetry is also observed at

ν = 1
4
, 1

5
and conĄrmed with the loss rate.

Figure 3: Diferent behaviors of the amplitude-dependent

detuning when the linear tune approaches the 1
3
, 1

4
, 1

5
reso-

nances, which results in asymmetric stop-band widths.

The two tune-scan results in Fig. 2 are closely correlated.

The information needed for these, however, can be very

diferent. Using the data-driven chaos indicator, even short-

term (20 turns) map transformations for only partial initial

conditions can provide some useful information. The tune-

scan using the loss rate is more accurate, but it also requires

a greater number (2,048 turns) of map transformations for

more initial conditions of x and p. In real-world applications,

there may be a high resource demand to obtain such data.

Using limited data resources to obtain an early chaos indica-

tor has the potential advantage of boosting the optimization

of design of a nonlinear dynamical system.
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DATA-DRIVEN CHAOS INDICATOR FOR

STORAGE RINGS

Consider a storage ring accelerator composed of various

magnetic elements, in which the transportation of a charged

particle for single turn (or a few repetitive turns) can be

represented by a nonlinear transformation

−→
X 1 = M0→1 ·

−→
X 0. (3)

Here,
−→
X 1,

−→
X 0 are the particle coordinates in the phase space,

and M0→1 is the one-turn transportation map. Given the

ring magnetic lattice, and using some simulated trajectory

data (
−→
X 0,

−→
X 1), a surrogate model can be constructed. The

accuracy of the model, measured by the mean squared error

(MSE) between the testing set and its model prediction, is a

chaos indicator.

Using the existing NSLS-II lattice as an example, a surro-

gate model is used to approximate its one-turn transportation.

The desired DA dimensions are x = 25 mm and y = 10 mm

in the horizontal and vertical planes respectively, at the lo-

cation of injection point. Thus, two elliptical areas in the

phase space with axes at (x, x
βx

) and (y,
y

βy

), are uniformly

populated with 5,000 initial conditions as the input,
−→
X 0.

Here βx,y are the local Twiss parameters [16]. The one-turn

transportation can be accomplished with particle tracking

simulation. The coordinates at the exit are the output
−→
X 1.

The volume ratio of the training and testing data is 90%:10%.

To avoid over- or under-Ątting, the maximum number of

training epochs was set to a suiciently large number, and

an early stopping point was used to halt the training once

the model performance ceased improving. By varying har-

monic sextupole settings, the accuracy of the model was

monitored and used to drive a multi-objective genetic al-

gorithm (MOGA) optimizer [17]. Besides using the four

MSEs in each dimension (x, px, y, py) as the objectives, a

minimum number of conĄned trajectories in the ensemble

is used as a constraint. A good convergence of the average

prediction accuracy was reached after a 100th generation

of MOGA evolution as shown in Fig. 4. Using 100 Intel®

Xeon® 2.2-2.3 GHz CPU cores, optimization on this scale

takes about 6 to 8 hours.

The candidate with the largest DA was chosen to imple-

ment a detailed frequency map analysis (FMA) [18] as shown

in Fig. 5. An experimental test with live beam has been also

carried out to conĄrm that this nonlinear lattice satisĄes

the requirements on the of-axis top-of injection and beam

lifetime. Its DA is comparable to the solutions found using

other methods [19Ű22].

The method was conĄrmed functional for the multi-bend

achromat (MBA) type lattices, which are widely used in the

difraction-limited light source rings [23].

CONCLUSION

A novel data-driven chaos indicator concept was intro-

duced by correlating the degree of chaos of a dynamical sys-

Figure 4: Convergence of prediction accuracy measured

with four mean squared errors of test datasets in the surro-

gate/MSE MOGA optimization.

Figure 5: On-momentum dynamic aperture colored with

the difusion, obtained from frequency map analysis for the

candidate with the largest DA. The color represents the tune

difusion log10(∆ν
2
x + ∆ν

2
y) [18].

tem and its surrogate modelŠs prediction accuracy. This indi-

cator can be used to optimize the dynamic aperture of storage

rings. Traditionally, the prediction accuracy of a model has

been critically important for many machine-learning appli-

cations. With this method, however, the prediction accuracy

is used as a relative indicator of the chaos of a dynamical

system. Greater accuracy is therefore less important, and

surrogate models which have a lower resource demand are

suicient for this purpose. This method also provides a

new perspective on the characterization of chaos in nonlin-

ear dynamical systems and an eicient method for dynamic

aperture optimization.
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