Author: Philippov, A.V.
Paper Title Page
WEPOPT001 NICA Ion Collider and Plans of Its First Operations 1819
 
  • E. Syresin, O.I. Brovko, A.V. Butenko, A.R. Galimov, E.V. Gorbachev, V. Kekelidze, H.G. Khodzhibagiyan, S.A. Kostromin, V.A. Lebedev, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
 
  The Nuclotron-based Ion Collider fAcility (NICA) is under assembling in JINR. The NICA goals are providing of colliding beams for studies of hot and dense strongly interacting baryonic matter and spin physics. The heavy ion injection complex of Collider NICA consisting from following accelerators: new acting heavy ion linac HILAC with RFQ and IH DTL sections at energy 3.2 MeV/u, new acting superconducting Booster synchrotron at energy up 600 MeV/u, acting superconducting synchrotron Nuclotron at gold ion energy 3.9 GeV/n, will starts operation with first ion beams in beginning of 2022. The assembling of two Collider storage rings with two interaction points was done in December 2021. The status of acceleration complex NICA and plans of its first operation is under discussion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT001  
About • Received ※ 30 May 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT003 Challenges of Low Energy Hadron Colliders 1825
 
  • G.V. Trubnikov, V.A. Lebedev
    JINR, Dubna, Russia
  • A.V. Butenko, S.A. Kostromin, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, E. Syresin, A. Tuzikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  NICA collider complex is under construction at JINR. The initial configuration of the collider will perform collisions of fully stripped heavy ions, 209 Bi and others, for a study of phase transition in the quark-gluon plasma in the energy range 1/4.5 GeV/u per beam. Commissioning of the collider injection chain has been recently started. The complex includes 2 linacs, 2 Booster synchrotrons (Booster and Nuclotron to support the beam injection to the collider), and 2 collider rings of 503 m circumference. The design luminosity is ~1027 1/(cm*s) at 4.5 GeV/u. The heavy ions are generated in the ESIS-type ion source with intensity ~10 9 /pulse. Then they are accelerated into the linac and Booster and directed to stripping target. Next, fully stripped ions are accelerated in the Nuclotron and injected into Collider. The electron and stochastic cooling are used in each of the collider rings to support beam accumulation and to prevent the emittance growth due to intrabeam scattering. Three RF systems are used for longitudinal phase space manipulations. An achievement of design luminosity requires overcoming many technological and beam physics problems which are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT003  
About • Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)