Author: Perez, F.    [Pérez, F.]
Paper Title Page
TUPOMS027 ALBA II Acelerator Upgrade Project 1467
 
  • F. Pérez, I. Bellafont, G. Benedetti, J. Campmany, M. Carlà, J.J. Casas, C. Colldelram, F.F.B. Fernández, J.C. Giraldo, T.F. Günzel, U. Iriso, J. Marcos, Z. Martí, V. Massana, R. Muñoz Horta, M. Pont, L. Ribó, P. Solans, L. Torino
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is working on the upgrade project that shall transform the actual storage ring, in operation since 2012, into a 4th generation light source, in which the soft X-rays part of the spectrum shall be diffraction limited. The project has been officially launched in 2021 and a White Paper presenting the main concepts of the upgrade has been published in Spring 2022. The storage ring upgrade is based on a 6BA lattice which has to comply with several constraints imposed by the decision of maintaining the same circumference (269 m), the same number of cells (16), the same beam energy (3 GeV), and as many of the source points as possible unperturbed. The lattice optimization has achieved an emittance of 140 pm.rad, which is a factor 30 smaller than that of the existing ring, but with an array compactness that presents technological challenges for the magnets, vacuum, diagnostics, RF systems and injection elements designs that are being investigated through an intensive R&D program.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS027  
About • Received ※ 06 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS028 3HC - Third Harmonic Normal Conducting Active Cavity Collaboration Between HZB, DESY and ALBA 1471
 
  • F. Pérez, J.R. Ocampo, A. Salom, P. Solans
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • W. Anders, V. Dürr, T. Loewner, A.N. Matveenko, M. Ries, L. Shi, Y. Tamashevich, A.V. Tsakanian
    HZB, Berlin, Germany
  • M. Ebert, R. Onken
    DESY, Hamburg, Germany
  • P. Hülsmann
    GSI, Darmstadt, Germany
  • W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: Co-funded by the European Regional Development Fund (ERDF)
A collaboration agreement between the HZB, DESY and ALBA institutions was signed on 2021 in order to test the 3rd harmonic normal conducting, HOM damped, active cavity designed and prototyped by ALBA*. The test will involve low power characterization of the fundamental mode, bead pull measurements to fully determine the HOM characteristics, a full high power conditioning to validate the power capability of the cavity, and finally, the installation of the cavity in the BESSY II storage ring in order to test the cavity in real conditions with beam. In this paper the low power, bead pull and conditioning results will be presented. The cavity has been installed at BESSY II on May 2022 to be tested after the summer shutdown.
* Prototype fabrication of an active normal conducting third harmonic cavity for the ALBA Storage Ring. J.Ocampo et al. , IPAC 2022 proceedings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS028  
About • Received ※ 06 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS049 Digital LLRF for the Canadian Light Source 1538
 
  • P. Solans, F. Pérez, A. Salom
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • D.R. Beauregard, C.J. Boyle, J.M. Patel, H. Shaker, J. Stampe
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source, at the University of Saskatchewan, is a 3rd generation synchrotron light source located in the city of Saskatoon, Canada. The facility comprises a 250 MeV LINAC, a full energy booster and a 2.9 GeV storage ring. The radiofrequency system in the booster consist of two 5-cell cavities feed with a single SSPA. The analogue LLRF for the booster has been recently replaced by a digital LLRF based in the ALBA design with a Picodigitizer, a stand-alone commercial solution provided by Nutaq. Also, the firmware of the new DLLRF is configurable to allow operation with a superconducting cavity feed with one amplifier, thus providing the possibility to replace the CLS SR LLRF as well. The main hardware components, the basic firmware functionalities and the commissioning measurements of the new DLLRF for the CLS booster will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS049  
About • Received ※ 08 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 30 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS051 Prototype Fabrication of an Active Normal Conducting Third Harmonic Cavity for the ALBA Storage Ring 1542
 
  • J.R. Ocampo, J.M. Álvarez, B. Bravo, F. Pérez, A. Salom, P. Solans
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Funding: Co-funded by the European Regional Development Fund (ERDF)
ALBA has designed a normal conducting active 1.5 GHz HOM damped cavity for the active third harmonic RF system for the ALBA Storage Ring (SR), which also will serve for the upgraded ALBA II. The third harmonic cavity at ALBA will be used to increase the bunch length in order to improve the beam lifetime and increase the beam stability thresholds. A prototype has been constructed by the company AVS in collaboration with VITZRO. This paper presents the design of the cavity, the constructed prototype, the Acceptance Tests measurements, and the future plans.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS051  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)