Author: Otto, T.
Paper Title Page
TUOXSP3 Evaluation of Geometrical Precision and Surface Roughness Quality for the Additively Manufactured Radio Frequency Quadrupole Prototype 787
 
  • T. Torims, D. Krogere, G. Pikurs, A. Ratkus
    Riga Technical University, Riga, Latvia
  • A. Cherif, M. Vretenar
    CERN, Meyrin, Switzerland
  • N. Delerue
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • M. Foppa Pedretti, M. Pozzi
    Rösler Italiana s.r.l., Concorezzo, Italy
  • S. Gruber, E. Lopez
    Fraunhofer IWS, Dresden, Germany
  • T. Otto
    TalTech, Tallinn, Estonia
  • M. Thielmann, P. Wagenblast
    TRUMPF, Ditzingen, Germany
  • M. Vedani
    POLIMI, Milano, Italy
 
  A multidisciplinary collaboration within the I.FAST project teamed-up to develop additive manufacturing (AM) technology solutions for accelerators. The first prototype of an AM pure-copper radio frequency quadrupole (RFQ) has been produced, corresponding to 1/4 of a 4-vane RFQ*. It was optimised for production with state-of-the-art laser powder bed fusion technology. Geometrical precision and roughness of the critical surfaces were measured. Alt-hough the obtained values were beyond standard RFQ specifications, these first results are promising and con-firmed the feasibility of AM manufactured complex cop-per accelerator cavities. Therefore, further post-processing trials have been conducted with the sample RFQ to im-prove surface roughness. Algorithms for the AM techno-logical processes have also been improved, allowing for higher geometrical precision. This resulted in the design of a full 4-vane RFQ prototype. At the time of the paper submission the full-size RFQ is being manufactured and will undergo through the stringent surface quality meas-urements. This paper is discussing novel technological developments, is providing an evaluation of the obtained surface roughness and geometrical precision as well as outlining the potential post-processing scenarios along with future tests plans.
* Torims T, et al. First Proof-of-Concept Prototype of an Additive Manufactured Radio Frequency Quadrupole. Instruments. 2021; 5(4):35. https://doi.org/10.3390/instruments5040035
 
slides icon Slides TUOXSP3 [10.031 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXSP3  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)