Author: Osterhoff, J.
Paper Title Page
MOOYGD1
Experiments Towards High-Repetition Rate Plasma Wakefield Acceleration at FLASHForward  
 
  • G. Loisch, J. Beinortaite, G.J. Boyle, R.T.P. D’Arcy, S. Diederichs, J.M. Garland, P. Gonzalez-Caminal, C.A. Lindstrøm, J. Osterhoff, T. Parikh, S. Schreiber, S. Schröder, M. Thévenet, S. Wesch, M. Wing
    DESY, Hamburg, Germany
  • J. Chappell, M. Wing
    UCL, London, United Kingdom
  • B. Foster
    JAI, Oxford, United Kingdom
  • P. Gonzalez-Caminal
    Universität Hamburg, Hamburg, Germany
 
  Beam-driven plasma-wakefield acceleration (PWFA) is one of the most promising techniques to reduce significantly the size and cost of future lepton accelerators. Huge steps have been taken in the last decades towards achieving high acceleration gradients with simultaneous beam-quality preservation. However, in order to match both the luminosity demands of high-energy physics and the brilliance requirements of photon science, PWFA must be capable of accelerating thousands of bunches per second ’ orders of magnitude beyond the current state of the art. Historically, investigation of the rate limitation in plasmas was limited by the number of bunches available from the accelerator front-end. The FLASHForward facility, which is driven by the superconducting linac of the FLASH free-electron laser, is the first experiment capable of addressing this issue. We report here on first experimental results from the facility, aimed at determining the repetition rate limit of plasma accelerators arising from fundamental plasma processes* and finally advancing the repetition rate of PWFA from proof-of-principle experiments at a few bunches per second to a competitive plasma accelerator.
* R. D’Arcy et al., Recovery time of a plasma-wakefield accelerator, Nature (in press)
 
slides icon Slides MOOYGD1 [2.953 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST032 Status Report of the 50 MeV LPA-Based Injector at ATHENA for a Compact Storage Ring 1768
 
  • E. Panofski, C. Braun, J. Dirkwinkel, J.B. Gonzalez, T. Hülsenbusch, A.R. Maier, J. Osterhoff, G. Palmer, P.A. Walker, P. Winkler
    DESY, Hamburg, Germany
  • E. Bründermann, B. Härer, A.-S. Müller, A.I. Papash, C. Widmann
    KIT, Karlsruhe, Germany
  • T.F.J. Eichner, L. Hübner, S. Jalas, L. Jeppe, M. Kirchen, P. Messner, M. Schnepp, M. Trunk, C.M. Werle
    University of Hamburg, Hamburg, Germany
  • M. Kaluza, A. Sävert
    HIJ, Jena, Germany
 
  Laser-based plasma accelerators (LPA) have successfully demonstrated their capability to generate high-energy electron beams with intrinsically short bunch lengths and high peak currents at a setup with a small footprint. These properties make them attractive drivers for a broad range of different applications including injectors for rf-driven, ring-based light sources. In close collaboration the Deutsches Elektronen-Synchrotron (DESY), the Karlsruhe Institute of Technology (KIT) and the Helmholtz Institute Jena aim to develop a 50 MeV plasma injector and demonstrate the injection into a compact storage ring. This storage ring will be built within the project cSTART at KIT. As part of the ATHENA (Accelerator Technology HElmholtz iNfrAstructure) project, DESY will design, setup and operate a 50 MeV plasma injector prototype for this endeavor. This contribution gives a status update of the 50 MeV LPA-based injector and presents a first layout of the prototype design at DESY in Hamburg.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST032  
About • Received ※ 07 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT021 A Discharge Plasma Source Development Platform for Accelerators: The ADVANCE Lab at DESY 1886
 
  • J.M. Garland, R.T.P. D’Arcy, M. Dinter, S. Karstensen, S. Kottler, G. Loisch, K. Ludwig, J. Osterhoff, A. Rahali, A. Schleiermacher, S. Wesch
    DESY, Hamburg, Germany
 
  Novel plasma-based accelerators, as well as advanced, high-gradient beam-manipulation techniques’for example passive or active plasma lenses’require reliable and well-characterized plasma sources, each optimized for their individual task. A very efficient and proven way of producing plasmas for these applications is by directly discharging an electrical current through a confined gas volume. To host the development of such discharge-based plasma sources for advanced accelerators, the ATHENA Discharge deVelopment ANd Characterization Experiment (ADVANCE) laboratory has been established at DESY. In this contribution we introduce the laboratory, give a summary of available infrastructure and diagnostics, as well as a brief overview of current and planned scientific goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT021  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT059 Development of a Transfer Line for LPA-Generated Electron Bunches to a Compact Storage Ring 2730
 
  • B. Härer, E. Bründermann, D. El Khechen, A.-S. Müller, A.I. Papash, S.C. Richter, R. Ruprecht, J. Schäfer, M. Schuh, C. Widmann
    KIT, Karlsruhe, Germany
  • L. Jeppe
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • A.R. Maier, J. Osterhoff, E. Panofski
    DESY, Hamburg, Germany
  • P. Messner
    University of Hamburg, Hamburg, Germany
 
  The injection of LPA-generated beams into a storage ring is considered to be one of the most prominent applications of laser plasma accelerators (LPAs). In a combined endeavour between Karlsruhe Institute of Technology (KIT) and Deutsches Elektronen-Synchrotron (DESY) the key challenges will be addressed with the aim to successfully demonstrate injection of LPA-generated beams into a compact storage ring with large energy acceptance and dynamic aperture. Such a storage ring and the corresponding transfer line are currently being designed within the cSTART project at KIT and will be ideally suited to accept bunches from a 50 MeV LPA prototype developed at DESY. This contribution presents the foreseen layout of the transfer line from the LPA to the injection point of the storage ring and discusses the status of beams optics calculations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT059  
About • Received ※ 05 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)