Author: Nuiry, F.-X.
Paper Title Page
WEIYGD1 Achievements and Performance Prospects of the Upgraded LHC Injectors 1610
 
  • V. Kain, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, F. Antoniou, T. Argyropoulos, F. Asvesta, B. Balhan, M.J. Barnes, D. Barrientos, H. Bartosik, P. Baudrenghien, G. Bellodi, N. Biancacci, A. Boccardi, J.C.C.M. Borburgh, C. Bracco, E. Carlier, D.G. Cotte, J. Coupard, H. Damerau, G.P. Di Giovanni, A. Findlay, M.A. Fraser, A. Funken, B. Goddard, G. Hagmann, K. Hanke, A. Huschauer, M. Jaussi, I. Karpov, T. Koevener, D. Küchler, J.-B. Lallement, A. Lasheen, T.E. Levens, K.S.B. Li, A.M. Lombardi, N. Madysa, E. Mahner, M. Meddahi, L. Mether, B. Mikulec, J.C. Molendijk, E. Montesinos, D. Nisbet, F.-X. Nuiry, G. Papotti, K. Paraschou, F. Pedrosa, T. Prebibaj, S. Prodon, D. Quartullo, E. Renner, F. Roncarolo, G. Rumolo, B. Salvant, M. Schenk, R. Scrivens, E.N. Shaposhnikova, P.K. Skowroński, A. Spierer, F. Tecker, D. Valuch, F.M. Velotti, R. Wegner, C. Zannini
    CERN, Meyrin, Switzerland
 
  To provide HL-LHC performance, the CERN LHC injector chain underwent a major upgrade during an almost 2-year-long shutdown. In the first half of 2021 the injectors were gradually re-started with the aim to reach at least pre-shutdown parameters for LHC as well as for fixed target beams. The strategy of the commissioning across the complex, a summary of the many challenges and finally the achievements will be presented. Several lessons were learned and have been integrated to define the strategy for the performance ramp-up over the coming years. Remaining limitations and prospects for LHC beam parameters at the exit of the LHC injector chain in the years to come will be discussed. Finally, the emerging need for improved operability of the CERN complex will be addressed, with a description of the first efforts to meet the availability and flexibility requirements of the HL-LHC era while at the same time maximizing fixed target physics output.  
slides icon Slides WEIYGD1 [5.905 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIYGD1  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST026 Conceptual Design of the FCC-ee Beam Dumping System 1753
SUSPMF002   use link to see paper's listing under its alternate paper code  
 
  • A.M. Krainer, P. Andreu Muñoz, W. Bartmann, M. Calviani, Y. Dutheil, A. Lechner, F.-X. Nuiry, A. Perillo-Marcone
    CERN, Meyrin, Switzerland
  • R.L. Ramjiawan
    JAI, Oxford, United Kingdom
 
  The Future Circular electron-positron Collider (FCC-ee) will have stored beam energies of up to 20 MJ. This is a factor 100 higher than any current or past lepton collider. A safe and reliable disposal of the beam onto a beam dump block is therefore critical for operation. To ensure the survival of the dump core blocks, transversal dilution of the beam is necessary. To reduce the complexity of the system and guarantee high availability, an optimized, semi-passive beam dumping system has been designed. The main dump absorber design has been optimized following recent studies for high energy dump block materials for the LHC High Luminosity upgrade. First simulations regarding the radiation environment of the dumping system have been carried out, allowing the definition of preliminary constraints for the integration with respect to radiation sensitive equipment. The performance of the system has been evaluated using Monte-Carlo simulations as well as thermomechanical Finite-Element-Analysis to investigate potential material failure and assess safety margins. An experiment at the CERN HiRadMat facility has been carried out and preliminary results show good agreement with simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST026  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK049 Irradiation of Low-Z Carbon-Based Materials with 440 GeV/c Proton Beam for High Energy & Intensity Beam Absorbers: The CERN HiRadMat-56-HED Experiment 2883
 
  • P. Andreu Muñoz, M. Calviani, N. Charitonidis, A. Cherif, E.M. Farina, A.M. Krainer, A. Lechner, J. Maestre, F.-X. Nuiry, R. Seidenbinder, C. Torregrosa
    CERN, Meyrin, Switzerland
  • P. Simon
    TU Darmstadt, Darmstadt, Germany
 
  The beam stored energy and the peak intensity of CERN Large Hadron Collider (LHC) will grow in the next few years. The former will increase from the 320 MJ values of Run2 (2015-2018) to almost 540 MJ during Run3 (2022 onwards) and 680 MJ during the HL-LHC era putting stringent requirements on beam intercepting devices, such as absorbers and dumps. The HiRadMat-56-HED (High-Energy Dumps) experiment performed in Autumn 2021 executed at CERN HiRadMat facility employed the Super Proton Synchrotron accelerator (SPS) 440 GeV/c proton beam to impact different low-density carbon-based materials targets to assess their performance to these higher energy beam conditions. The study focused on advanced grades of graphitic materials, including isostatic graphite, carbon-fiber reinforced carbon and carbon-SiC materials in addition to flexible expanded graphite. Some of them specifically tailored in collaboration with industry to very specific properties. The objectives of this experiment are: (i) to assess the performance of existing and potentially suitable advanced materials for the currently operating LHC beam dumps and (ii) to study alternative materials for the HL-LHC main dump or for the Future Circular Collider dump systems. The contribution will detail the R&D phase during design, the execution of the experiment, the pre-irradiation tests as well as the first post irradiation examination of the target materials. Lessons learnt and impact on operational devices will also be drawn.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK049  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)