Author: Nagler, R.
Paper Title Page
THPOTK062 Thermal Modeling and Benchmarking of Crystalline Laser Amplifiers 2921
 
  • D.T. Abell, D.L. Bruhwiler, P. Moeller, R. Nagler, B. Nash, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • Q. Chen, C.G.R. Geddes, C. Tóth, J. van Tilborg
    LBNL, Berkeley, California, USA
  • N.B. Goldring
    STATE33 Inc., Portland, Oregon, USA
 
  Funding: This work is supported by the US Department of Energy, Office of High Energy Physics under Award Numbers DE-SC0020931 and DE-AC02-05CH11231.
Ti:sapphire crystals constitute the lasing medium of a class of lasers valued for their wide tunability and ultra-short, ultra-high intensity pulses. When operated at high power and high repetition rate (1kHz), such lasers experience multiple effects that can degrade performance. In particular, thermal gradients induce a spatial variation in the index of refraction, hence thermal lensing*. Using the open-source finite-element code FEniCS***, we solve the relevant partial differential equations to obtain a quantitative measure of the disruptive effects of thermal gradients on beam quality. We present thermal simulations of a pump laser illuminating a Ti:sapphire crystal. From these simulations we identify the radial variation in the refractive index, and hence the extent of thermal lensing. In addition, we present analytic models used to estimate the effect of thermal gradients on beam quality. This work generalizes to other types of crystal amplifiers.
* S. Cho, et al., Appl. Phys. Express, 11:092701, 2018.
** M. Born & E. Wolf, Principles of Optics, Cambridge Univ. Press, 1980.
*** The FEniCS computing platform, https://fenicsproject.org
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK062  
About • Received ※ 13 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)